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I. INTRODUCTION

Draft picks are an important commodity in the NBA,
able to be used to directly add players to a team, or they
can be traded as assets for current players, other draft
picks, or other assets. Therefore it is important to be able
to place a value on those draft picks in an abstract sense.
As with everything in the NBA, how well one is able to
do that depends entirely on the situation, however it is
possible to make assessments based on generic situations,
and then to allow the actual circumstances to dictate the
final decision.

This paper will be concerned with assessing the value
of draft picks in prospective trades; it will consider the
generic case of a team trading the rights to a future draft
pick given certain protections, finding the probability of
where the pick should be expected to fall based on the
team’s performance and projections for the future, and
giving a relative value to each drafting position. There
is a bit of feedback in this situation, because accurately
projecting how well a team will do depends on being able
to predict how much the rookies on the team will help
them, but that will be accounted for.

In the end, the goal is to have a function that will be
able to provide the expected value of a team’s future draft
pick, taking into account any protections placed on the
pick, as well as the likelihood that it will be transferred
(i.e. not protected) in the nearest draft.

In Section II, I will cover some of the basic rules for the
draft, focusing mainly on the lottery system. In Section
III, I will describe how to find a mapping of a team’s
winning percentage onto their likely finishing position in
the league that season. From there, I will describe how
to determine the drafting order based on a team’s likely
finishing position in Section IV. Then in Section V, I
will describe how to come up with a way to give a value
to each pick in the draft, from 1 to 60, based on past
performance of players picked in each position. In Section
VI, a number of methods will be presented to predict a
team’s winning percentage at the end of the season that
leads into the draft. Finally, in Section VII, I will put all
of the parts together to form a cohesive way of evaluating
a team’s draft pick for the purposes of a trade.

II. DRAFTING RULES

Draft ordering is separated into two sets of teams:
those who make the playoffs; and those who miss the
playoffs. Currently (since 2005), there are 30 teams in
the NBA, 16 of which make the playoffs (the top 8 from
each conference), and 14 (7 from each conference) who
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FIG. 1. Lottery odds by finishing order for the previous sea-
son. The fall off is slightly faster than an exponential decay.

miss the playoffs. The teams which make the playoffs are
given picks 15-30 in order of worst final winning percent-
age, thus the team with the best winning percentage will
pick last; performance in the playoffs does not matter
for draft seeding. Teams with the same winning percent-
ages utilize a coin toss to determine ordering for the first
round; that ordering changes in the second round. The
teams which miss the playoffs are entered into a lottery
to determine the 1-14 draft ordering.

The odds for the lottery are given based on finishing
order, where the team with the worst record gets the best
odds, and they decrease after that, falling off faster than
exponential decay. The team with the worst record in
the previous season has a 25% chance of getting the first
pick, while the team with the best record that missed the
playoffs has only a 0.5% chance. Once a team wins the
number 1 draft spot, they cannot win the number 2 or
3 spots, and so the odds change for the number 2 and
3 picks, but they are all based off of these initial odds.
Once the lottery teams have been selected, the remaining
teams are seeded in order of worst finishing record. Thus
the team with the worst record in the league can drop
only as far as the 4th spot. Table I lists the odds for a
team in each finishing order winning any of the 14 draft
positions, and Figure 1 shows the chances each position
has of receiving the first pick. [1]

Draft picks are able to be traded between teams for
players, coaches, other draft picks, and to some extent
money. The teams are allowed to put restrictions on
the transferring of the pick, such that if the pick falls in
a certain range of draft positions, the pick will not be
given that year, and other provisions are made, generally
resulting in a pick in the next draft, with its own set
of restrictions. Up to 55 draft slots may be protected



2

fo Draft Position

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.250 0.215 0.178 0.357 — — — — — — — — — —

2 0.199 0.188 0.171 0.319 0.123 — — — — — — — — —

3 0.156 0.157 0.156 0.226 0.265 0.040 — — — — — — — —

4 0.119 0.126 0.133 0.099 0.351 0.160 0.012 — — — — — — —

5 0.088 0.097 0.107 — 0.261 0.360 0.084 0.004 — — — — — —

6 0.063 0.071 0.081 — — 0.439 0.305 0.040 0.001 — — — — —

7 0.043 0.049 0.058 — — — 0.599 0.232 0.018 — — — — —

8 0.028 0.033 0.039 — — — — 0.724 0.168 0.008 — — — —

9 0.017 0.020 0.024 — — — — — 0.813 0.122 0.004 — — —

10 0.011 0.013 0.016 — — — — — — 0.870 0.089 0.002 — —

11 0.008 0.009 0.012 — — — — — — — 0.907 0.063 0.001 —

12 0.007 0.008 0.010 — — — — — — — — 0.935 0.039 —

13 0.006 0.007 0.009 — — — — — — — — — 0.960 0.018

14 0.005 0.006 0.007 — — — — — — — — — — 0.982

TABLE I. The odds of ending up in a given Draft Position based on finishing order, fo, among the lottery teams. Dashes
indicate zero probability of getting that position. (Source: Wikipedia [1])

in this way in a particular draft. Draft picks count as
$0 for salary cap purposes until they are signed. Draft
picks may be traded up to 7 years in the future. There
are also certain other rules that apply, such as teams
not being allowed to trade their first-round draft pick for
consecutive seasons, but they are beyond the scope of
this paper. [2]

Note that all assessments of the draft made in this pa-
per will assume that the draft follows this set of rules, and
that there are no special circumstances in the upcoming
draft; an example of a special circumstance would be an
expansion team joining the league and being guaranteed
a top-3 pick.

III. MAPPING WINNING PERCENTAGES
ONTO FINAL LEAGUE ORDERING

The first step to determining which draft pick a given
team will have in an upcoming draft is to come up with a
mapping of winning percentages onto finishing order with
respect to the other teams in the league. From there, it
is a simple calculation to get the odds of the pick landing
in any given position.

The final ordering of teams in terms of lottery odds
and playoff teams will change from year to year based
on how the wins are distributed, but for the most part,
knowing a team’s winning percentage at the end of the
season will allow one to determine each team’s ordering
to within a few spots. In order to find this mapping,
I first binned the data by winning percentage. I chose
to use the 2005-2014 seasons as the data from which to
build the map, since 2005 was the first season in which
there were the current number of 30 teams in the league.

Since there are 82 games in a normal NBA season
(some seasons are shorter due to strikes or lockouts —
2012 for example), and there are 30 teams each season
over 10 years (since 2005), a bin size of 2 wins (corre-
sponding to 2/82 ∼ 0.024 in winning percentage) seems
appropriate. Figure 2 shows the results of such a binning
for (a) teams in the Eastern Conference, (b) teams in the
Western Conference, and (c) all teams in the league. The
analysis done here will consider all teams in the league,
instead of the two conferences separately, but it is im-
portant to see that there is a distinction between the
two conferences for teams winning between 40 and 50
games. In the Western Conference, those teams are more
likely to miss the playoffs than similar teams in the East.
For each of the past 10 years, the three teams with the
worst records among the playoff teams have been from
the Eastern Conference, with one exception. This bal-
ance of power is likely to change at some point in the
future, but the conference of the team being traded with
should be considered for now.

Once the data were binned, I found the mean and stan-
dard deviation of both the finishing order and winning
percentage in each bin. Figure 2 (c) shows the mean
and standard deviation for each bin overlain on the dis-
tribution. I then fit the resulting set of points. Since
data take the shape of an S, a third-order polynomial is
a good approximation, at least in the range where most
of the teams fall — from a winning percentage of 0.2 to
0.8. The size of the standard deviation of each bin can
be approximated by a second-order polynomial between
winning percentages of 0.2 and 0.8. Once the functions
for the mean and standard deviation have been found, it
is a simple matter to find the likely finishing order for
any team from their winning percentage. Figure 2 (d)
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FIG. 2. Finishing order vs winning percentage since 2005 for (a) teams in the Eastern Conference, (b) teams in the Western
Conference, (c) all teams in the league along with the mean and standard deviation for each bin shown in red, and the standard
deviations by themselves shown in black along the bottom, and (d) shows all teams in the league as well, but with the fit
function, latexF (p), shown in the yellow band; the size of the band indicates the standard deviation, latexσF (p). The axis
at the top indicates the number of games won in an 82-game season corresponding to that winning percentage. The 2012
strike-shortened season was included. Note the gap in finishing order distribution in the Western Conference from 15-17. This
indicates that teams in the Western Conference are more likely to miss the playoffs, and thus be in the lottery, with a higher
winning percentage, than teams in the Eastern Conference.

shows the resulting function, which I will call F (p), as a
yellow band, where the width of the band indicates the
standard deviation, σF (p), expected. The actual results
are overlain to show the agreement. Note that below a
winning percentage of 0.2, we have assigned a mean of 1
and standard deviation of 0.5, as all teams below 17 wins
have had the worst record in the league for that season.
Similarly, teams with a winning percentage above 0.8 are
given the 30th slot with a standard deviation of 0.5, be-
cause all teams with more than 65 wins in a season have
had the best record in the league for that season.

IV. DRAFTING POSITION PROBABILITIES

Next, the probability of a team with a given winning
percentage and standard deviation landing in any par-
ticular draft position must be calculated. Teams are
awarded two draft slots per season, one in the first round
and one in the second round. The first-round slots are
awarded based on the lottery results, and then playoff

teams, while the second-round slots ignore the lottery
ordering and simply go based on finishing order for the
two groups, except that in cases of ties between winning
percentages, the positions get flipped between rounds.
In order to get the probability for each slot, it is neces-
sary to first calculate the probability of ending the season
with a given winning percentage, the probability of that
winning percentage turning into each position in overall
finishing order, and then the probability of that finishing
order changing with the lottery.

The probability, Pwp(p), of the team ending the season
with a given number of wins, w, after playing n games,
corresponding to a winning percentage of p = w/n, can
be calculated using Gaussian probability once a predicted
winning percentage, P , and standard deviation, σP have
been provided. The probability is given by

Pwp(w, n|P, σP ) =
1

nσP
√

2π
e
− (p−P )2

2σ2
P . (1)

Likewise, the probability, Pfo(f |p), of a team ending
up in a given position, f , in the finishing order of all
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teams in the league, given that they finished with a win-
ning percentage of p, can be written as

Pfo(f |p) =
1

σF (p)
√

2π
e
− (f−F (p))2

2σF (p)2 , (2)

where F and σF are the mean of the predicted finishing
order and its standard deviation, which are functions of
p, calculated in Section III.

The probability of getting a particular draft spot given
a particular finishing place, Pdo(δ|f), then depends on
the lottery. If the team is not in the lottery, then their
draft position, δ, equals their finishing order; if they are
in the lottery, then their draft position is a discrete func-
tion of the finishing order, g(f, δ), able to be read off of
Table I; so the equation can be written piece-wise as

Pdo(δ|f) =


g(f, δ) (lottery)

1 if δ = f (non-lottery)

0 if δ 6= f (non-lottery).

(3)

The total probability for each draft spot, given the
predicted winning percentage, P , and standard deviation
σP , can be written as P(δ|P, σP ), and is the sum over
the probabilities for all possible ways that slot could be
obtained, which is given by

P(δ|P, σP ) =
30∑
f=1

[
Pdo( δ|f)× (4)

n∑
w=1

(
Pwp(w, n|P, σP )× Pf (f |p)

)]
.

Thus, once a prediction has been made for the team’s
winning percentage and standard deviation, the proba-
bility for that team getting each draft slot can be pre-
dicted using Equation (4).

A. Examples

By way of example, I calculated the odds both for fin-
ishing order (which is relevant for the second-round or-
dering) and first-round drafting order. Figure 3 shows
these probabilities for six different winning percentages,
which correspond to 15, 25, 35, 45, 55, and 65 wins re-
spectively (when n=82). I elected to use the binomial
standard deviations (see Equation (5)) to illustrate how
spread out the results are even under the absolutely best
circumstances possible (prior to the season) even though
such precision is not practically realizable. Teams with
non-zero probabilities of finishing in spots 1-14 will be af-
fected by the lottery, but to varying degrees. The teams
with 15-45 wins each have scenarios in which they fin-
ish in the lottery, but the effects of the lottery odds are
much stronger on the teams with 15, 25, and 35 wins
than on the team with 45 wins, where the difference is
almost imperceptible. Teams finishing with 55 or more
wins are completely unaffected by the lottery, but still

show a wide variety of places they can finish with respect
to the league.

V. VALUING DRAFT PICKS

Ultimately, the value of a draft pick depends on what
a team does with it. Teams can trade the pick before
they even receive it, trade it before or during the draft,
or they can use the selection on a player, and then they
can sign him, trade him, or release him. One team may
use a pick on the exact player needed to fill a certain role
on the team, others choose the best player available, still
others draft players already playing in foreign leagues,
who won’t play in the NBA for some time. Each of these
teams may be valuing their pick differently.

Generally speaking, the value of the pick is related to
the quality of player that can be obtained with the pick,
and the number of options available to the team. Thus,
the number 1 pick in the draft will always be very desir-
able because the team with that pick has the maximum
number of choices, and in theory that team can always
get the best player (at least for their own purposes). But
how much less valuable is the second pick than the first,
and then how much less is the third, fifth, tenth, etc?

The main goal an NBA team is of course to win
games and championships, and make money while do-
ing so. Thus, there are at least two ways to consider
how much a player is worth to his team: how many
games/championships he can win; and how much money
he can make for the team over his own salary. To some
extent, the NBA has already placed a valuation on the
draft picks by means of the rookie pay scale. This spec-
ifies a salary to each draft position, and whatever team
signs that player (whether he was drafted by them, or
his rights were traded after the draft but before signing)
must pay him that salary to within 20%. The relative pay
scale can be seen in Figure 4. There are mandatory raises
after each of the first two seasons, but the ratio stays the
same. Once a player reaches his fourth year, the inequal-
ity starts to change. For the most part, players in their
first five years should be considered a bargain compared
to the cost of a free-agent providing the same minutes
and statistics. Also, any attempt to quantify how much
money a generic player could earn for his team would be
directly tied to the stats I will look at. As a result, I have
elected not to consider the draft pick’s potential salary,
or the monetary value he can bring to the team in this
study. [2]

I won’t go into all the details of rookie contracts here,
but the basic gist is that teams have the rights, or at
least options to the rights, to a player they drafted for
the first four years of his career, with additional rights
to contract offers for the fifth; after that they become
free-agents to some extent. Players certainly may stay
with the team that drafted them after that point, but
they are not obligated to. Therefore it makes sense to
consider a player’s worth in his first five seasons in the
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FIG. 3. latexPdo(pick) for all 30 draft positions for a win total of (a) 15, (b) 25, (c) 35, (d) 45, (e) 55, and (f) 65, assuming a
binomial standard deviation. The black points indicate the probability for finishing in that place in the league (and drafting
order for the second round), while the red points indicate the probability for drafting in that position in the first round. Above
draft position = 14, the two are always identical. The team with 15 wins has an almost 60% chance of being the worst team in
the league, but its most likely drafting position in the first round is number 4, due to the lottery. The teams with 25 and 35
wins also have their odds of picking 1-14 slightly altered. The team with 45 wins has a barely perceptible difference between
his finishing order odds and draft order odds for low draft picks. The teams with 55 and 65 wins are completely out of the
lottery, and so their two odds are the same. Note that these standard deviations are the best we could ever conceivably do
(prior to the season), and there is still a wide range of possible draft positions for each team.
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FIG. 4. The rookie pay scale, shown with salaries relative to
the number 1 draft pick. The bars indicate the range in salary
that may be offered to the player.

league, which may or may not start the season after he
was drafted. [2]

There are many ways in a which a player may be con-
sidered valuable to his team, some players might score a
lot of points, others might grab a ton of rebounds, an-
other may be a skilled defender, and a last one may be
able to give his team 45 minutes a night. So how to
quantify the value of a particular draft position, when
players of many different styles may have been chosen
in that spot? Using points, or rebounds, or field-goal
percentage will not properly quantify the player, because
players from different positions generate stats at differ-
ing rates. In my mind there are two things that should
factor above any particular statistics, did the player help
his team win games, and how much time was he out there
helping his team win games?

Win shares are a statistic based off of Bill James
work in baseball, and are calculated and tabulated by
Basketball-Reference [3]. This stat takes into account
both offensive and defensive contributions to the team
by each player, and tries to determine how responsible he
was for his team winning the games they did. I am still
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a little bit skeptical of this statistic because I have not
calculated it myself and have no way to ascribe an uncer-
tainty to it, but it does a reasonable job of determining
how important players are with respect to others, and I
think it accurately encapsulates how many wins a player
brought to his team (as will be seen later). But addition-
ally, we should consider how much time the player is on
the court for his team in those 5 years; for some teams,
simply having a player who can produce a lot of minutes
even if it is not of the highest quality, is important.

It is necessary to calculate the average and standard
deviation of the number of win shares and minutes played
by all players chosen in each of the first 60 spots of the
draft (i.e. the first two rounds), both in the first five years
of their career, as well as just the first season. The need to
look at just the first year is because we need to be able
to add these rookies expected win shares and minutes
played to their teams’ rosters for their next season, as
will be used in Section VI.

Using the seasonal stats for every player drafted from
1985-2013 (players drafted in 2014 cannot be evaluated
yet), I separated players based on their draft position.
For players in the 1980s, when there were more than two
rounds, I decided to make a hard cut at the end of the
second round. This means that the last few picks only
have a few players because there have only been 30 teams
since 2005. For the first-year stats, all years between
1986 and 2014 were used for performance, but for the
five-year stats I only look at players who started their
careers in 2009 or before, so that they had a full five
seasons in the league. If a player was drafted, but did
not play his first season until a few years later, his five-
year clock starts with his first game played. This may
be inaccurate contract-wise with certain players, but it
is generally correct. There are many players who were
drafted and never played in the league for various reasons;
their null stats are included because it helps to show the
lower performance of some of the later picks.

Figure 5 shows the four distributions. They are shown
on a scale relative to the number 1 draft pick. Also note
that the x-axis has been shifted such that the number 1
pick is shown at 0, this is for ease in fitting the distribu-
tion. It is readily apparent from all four graphs that there
is a marked fall-off after the number 1 pick. By the tenth
pick, performance has already dropped to approximately
half of that of the top pick. Now, various fit functions can
be used to describe the distribution. The decay appears
to be exponential, so each is fit with an exponential func-
tion (shown in red on the plots). For the number of min-
utes played, the exponential fit is excellent. However, for
win shares the fit tends to over-estimate players drafted
in the 3-20 slots, and under-estimate the later picks. So I
used a fifth-order polynomial to obtain a better fit. This
fit is shown in blue on the plots. The difference between
the two fits is small for the minutes played, but much
more significant for the win shares. The polynomial fit
produces a much better χ2 result, indicating a better fit.
The polynomial fit will be used to make projections.

This is, of course, a fairly simple model, worrying only
about the win shares produced and minutes played. How-
ever, in the generic case of evaluating draft picks, it seems
appropriate. If a team has a specific need or situation,
this data can be looked at in another way. For instance,
consider the 2007 draft when Greg Oden and Kevin Du-
rant were each available; the team with the number 1
draft spot that year (Portland) might want to look at
the performance of centers vs shooting guards/small for-
wards, consider the possibility for injury with players
from both positions, etc. Of course, any statistic could
be used for evaluation purposes here, points, total points
produced, rebounds, etc; and the players used in the anal-
ysis can be a subset of the total number, (e.g. looking
at players by position); whatever the team needs can be
analyzed draft pick by draft pick in this manner.

VI. PREDICTING A TEAM’S WINNING
PERCENTAGE

Now that the mapping of winning percentages onto
final ordering and draft ordering has been determined,
and the value of the draft picks has been set, it is nec-
essary to be able to predict a team’s winning percentage
at the end of the season. This is a tall task. There is a
limit to how well any prediction can be made. Even if an
incredibly accurate prediction could be made about each
teams’ skill level at any point before or during the season,
random statistical fluctuations do no allow you to make
predictions to better than within about 5 games on av-
erage, and that’s assuming that the team’s skill level (as
well as the skill levels of all the other teams in the league)
does not change, which it certainly will, due to injuries,
trades, free-agent signings, rookies being an unsure com-
modity, etc. Taking these as caveats, it is still possible
to come up with predictions in a reasonable manner.

It will be assumed throughout this section that predic-
tions are being made between seasons, and that all the
stats from the previous season are available. If it is close
enough to the start of the next season that a reasonable
approximation of the team rosters exists, then better pre-
dictions can be made. If predictions are being made after
n games in the current season, the current winning per-
centage, p, can be used as a prediction for the rest of the
season, with a standard deviation of

σ =

√
p(1− p)

n
. (5)

Predictions from the start of the season can be combined
with the in-season results by means of a weighted av-
erage, using the standard deviations, σi, of each of the
predictions as the weights, by means of

pweighted =

1
σ2
1
p1 + 1

σ2
2
p2

1
σ2
1

+ 1
σ2
2

. (6)
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FIG. 5. Relative analysis of draft picks performance for (a) win shares during his first year in the league, (b) minutes played
during his first year, (c) win shares during his first 5 years in the league, (d) minutes played during his first 5 years in the
league. Everyone is measured with respect to the number 1 draft pick. Note that the x-axis is shifted down by 1, so that the
number 1 pick becomes the number 0 pick (for ease in fitting). Two fit lines are shown for each, the first an exponential decay
and the second a fifth order polynomial.

The standard deviation on that prediction is given by

σweighted =
1√

1
σ2
1

+ 1
σ2
2

. (7)

Note that these predictions would be good for the re-
mainder of the current season. Thus, to come up with
the final prediction you need to combine the two predic-
tions as

pfinal =
np+ (ntot − n)pweighted

ntot
, (8)

where ntot is the total number of games in the season,
generally 82, but sometimes less.

Alternatively, a method could be developed to predict
results at the end of the season based on statistics gener-
ated from the on-going season, such as current winning-
percentage, etc; but such a method will not be developed
in this section. See the conclusion for descriptions of how
the methods developed in this section can be adapted for
mid-season predictions.

There are many ways to predict a team’s winning per-
centage in the coming season. We will look at a few such
ways below, discussing their method and formulation, as
well as strengths and weaknesses.

A. League Average

The absolute easiest prediction that can be made is
simply to assume every team will win the league aver-
age number of games — that is, exactly half — with a
standard deviation given by the standard deviation in
the winning percentages in the previous year. This pre-
diction uses no information about the teams, and treats
each of them equally, and therefore is a weak tool. How-
ever, it will be useful to compare other methods to this
one, so this will be used as a baseline test.

B. Last Year’s Winning Percentage

The next easiest prediction is simply to use the team’s
performance from the previous season as the guess. Thus,
the winning percentage from last year is the guess, and
the standard deviation is obtained from Equation (5).
This prediction does treat each team differently, how-
ever, it assumes that the team does not change in the
off-season, which it certainly will, adding and subtracting
players, changing coaches and styles, etc. This method
will also mostly be useful as a means of comparison.
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C. Similarity Methods

A better prediction can be made by using the team’s
statistics. A number of teams similar to the team in
question can be found from previous NBA seasons us-
ing some metric, and then those teams’ performances in
the season immediately following that one can be used
to come up with a prediction and standard deviation.
This method relies on a distance metric, which I have
described in both of my previous papers. In this case, we
define the distance metric as

d2ij =

4∑
k=1

wk

(
sik − s̄

i,pop
k

σi,popk

−
sjk − s̄

j,pop
k

σj,popk

)2

, (9)

where dij is the distance between seasons i and j, with
season i being the season in question; the sk are the statis-
tics we will be using; s̄i,popk is the mean of sk for the pop-
ulation from which season i was drawn (i.e. if season i

is from the 2014 season, then s̄i,popk is the mean of sk for

all teams in the 2014 season); σi,popk is likewise the stan-
dard deviation for the population from which season i
was drawn; and the wk are the weights assigned to those
statistics.

Equation (9) can be used with any number of different
statistics, so long as they have well-defined means and
standard deviations. Given a season that you would like
to find the N most similar seasons for, it is only necessary
to search through all the possible team-seasons available
(this may be limited depending on the objective) and
calculate dij for each pair, and select the N closest. The
number N will be significantly smaller here than it is
when looking at players because the number of teams
is much smaller. N is chosen to be 10 unless otherwise
noted. Once the N teams have been selected, it is simply
necessary to get the average and standard deviation of
their next season results.

For example, if the 10 most similar teams have the
following results for number of wins in their next season,
[50, 52, 60, 45, 58, 41, 55, 51, 38, 51], and they were all
played in 82-game seasons, then the predicted winning
percentage is 0.611, about 50 games, and the standard
deviation is 0.085, or about 7 games.

1. Same Team Last Season

One set of statistics that can be used to determine sim-
ilarity is the set of four factors, identified by Dean Oliver
as the keys to success in basketball, for the team in the
previous season. These factors are a team’s offensive-
rebounding percentage, effective field-goal percentage,
offensive-turnover percentage, and free-throw-made rate.
Additionally, their defensive counterparts should be con-
sidered as well. Thus, the combined offensive-rebounding
percentage that their opponents had in games against
them, as well as the other three stats, should also be
considered.

To be clear on the calculation of the four stats, I list
their formulas below:

orp =
orb

orb+ drbopp
(10)

is the offensive-rebounding percentage, where orb is the
number of offensive rebounds, and drbopp is the number
of defensive rebounds that their opponents grabbed;

efgp =
fgm+ 0.5 · threem

fga
(11)

is the effective field-goal percentage, where fgm is the
number of field-goals made, threem is the number of
three-point field-goals made, and fga is the number of
field-goals attempted;

top =
tov

poss
(12)

is the turnover percentage, where tov is the number of
turnovers, and poss is the number of possessions, where

poss = fga+ tov + 0.44 · fta− orb , (13)

and fta is the number of free-throws attempted; and fi-
nally

ftmr =
ftm

fga
(14)

is the free-throw-made rate, where ftm is the number of
free-throws made.

In addition to these eight stats (four offensive, four
defensive), we also include the team’s winning percentage
in the preceding season. The relative weighting of these
nine factors was determined based on fitting, however, I
will not go into the details of that here.

The benefits of this method are that it gives unique
predictions for each team based on their performance in
the previous season, and that it can be made immediately
after the season has ended, which is useful for trades that
might occur before or during the draft. Its drawbacks
are that it does not take into account any changes that
happen with the team, like players leaving, new players
arriving, coaching changes, etc.

2. Opening-Day Roster

We can overcome some of the shortcomings of the pre-
vious method by looking at the stats for each player on
the team’s expected opening-day roster in the previous
season. Thus, I am still using last year’s stats as the ba-
sis for finding similar teams, but am now correcting for
changes in the team’s roster. I will use the same four fac-
tors as above, however this time only for offensive stats.
This is because it is possible to calculate a team average
for each of the four offensive factors based on an individ-
ual player’s personal stats from the season, but defense
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is a bit harder because defensive stats are not measured
in the same way as offensive stats. Trying to calculate
an individual player’s contribution to his opponent’s ef-
fective field-goal percentage is a task beyond the scope
this project.

To compensate for this lack of defensive stats, and the
loss of the actual winning percentage which was used in
the previous method, I will include the combined win
shares from the previous season for the players currently
on the roster. The number that I am concerned with is
actually the average win shares per 48 minutes for the
team, which is

wsp48 = 48 · 5 ·

∑
players

wsi∑
players

mpi
, (15)

where I sum over all of the win shares and minutes played
from the players on the roster in the previous season,
and the factor of 5 takes into account that there are five
players on the floor, and so we don’t want to use just the
overall average, which would be a per player stat, not a
team stat.

We also include rookies in the wsp48 stat. The method
for predicting a draft pick’s win shares and minutes
played in his first season was detailed in Section V.
These predictions are added to the win share and minutes
played for the whole team before wsp48 is calculated. It
is not possible at this time to include the rookies in the
other four stats.

These five stats then can be used to find similar teams.
The weighting for these stats is again derived from a fit.
As with the previous method, once the similar teams
are found, their winning percentages in that season are
combined together to get a mean and standard deviation.

The benefit of this method is that it takes into account
the current make-up of the team, not just how the team
performed in the previous season regardless of changes
to the team. It is able to be easily extended, as we have
already done by including the rookies. It would also be
possible to include stats from the previous two or more
seasons, instead of just the immediately preceding one.

This method obviously does not take into account pos-
sibility for injuries or trades, however it could be recal-
culated whenever a change in the roster occurs. It could
also be easily modified to work for mid-season predic-
tions instead of just pre-season predictions. In doing so,
we could add in the current season’s measured stats so
far to the parameter list for the distance calculations.

The main drawback for this method is that it is not
accurate until the team’s roster for the next year is rel-
atively set. While it may be apparent that a certain
player will leave his team after the season, and so you
can account for that, you may not know which team he
will sign with, or who will take his place, for some time.
Thus, this is much more useful immediately before or
during the season. The other drawback is that there is
currently no way to account for defense. However, we

wsp48
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FIG. 6. Winning percentage at the end of the season vs com-
bined win shares per 48 minutes at the beginning of the season
for all teams from the 1990-1999 seasons. The black points
with error bars indicate the means and standard deviations
in each of the 20 bins.

could split the win shares up into offensive and defensive
win shares to account for some of that loss.

D. Win Shares

I discussed win shares in the previous section, as part of
the distance metric to find similar teams, but the wsp48
stat for the players on the roster can also be used as a
quick way to predict wins on their own. Figure 6 shows
all the winning percentages at the end of the season vs
the team’s wsp48 at the beginning of the season for teams
from 1990 to 1999. The black points with error bars show
the mean and standard deviation for each bin (there are
20 bins). While it is obviously not perfect, and has a
large standard deviation, the means do fall very close to
the line which would show a one-to-one correspondence.
Thus, it can also be used for predictions.

The benefit of this method is that the winning per-
centage and standard deviation can be directly read off
of one plot, or using a simple function. There is no need
to do any calculation, so long as you have the wsp48 of
the team handy. That stat can easily be updated as the
season goes on to include changes in the team, or current-
year results. The main drawback to this method is the
size of the error bars, which are generally near 10 games.

E. Evaluating the Predictions

In order to evaluate these methods and the predictions
they give, we must test them with real data. To that
end, I have gathered the end-of-year statistics for every
team and player since 1980; however, only the years since
1986 are useful for our study because prior to that, the
statistics I have obtained (from Basketball-Reference [3])
do not contain offensive rebounding stats, and some lack
field-goal attempts. I have also obtained the game-by-
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game stats for all players and teams in those seasons.
Due to team movement and name changes, a mapping of
team names from year to year was created.

1. Compiling the Roster

Once the data were obtained, it was necessary to com-
pile a roster for each team at the beginning of each sea-
son. I was not able to find complete rosters on open-
ing day for all of the teams, so it was generated with
the following method. Let’s say I’m looking at the 2014
Philadelphia 76ers. I start by looking through every
player who played in the 2014 season. If the player played
that season and played only for one team, the 76ers, and
he was on the 76ers in the previous season (2013), then
he was counted on the team. If he only played for one
team, the 76ers, that year, but was not on the team last
year, and his first game for the team was during the first
month of the season, then he was counted as on the team.
The one month cut-off is to try to avoid counting free-
agents who may have been added during the course of
the season. Clearly, some free-agents and D-league call-
ups will be accidentally included, but most will add only
marginally to the statistics, because their previous sea-
son likely won’t be stellar. If he played for more than one
team, but he started with the 76ers and was on the team
in their previous season, he was added to the roster. If
he was on more than one team, started with the 76ers,
but was not on the team last year, then we again require
him to play within the first month.

This method does an excellent job of getting everyone
who was on the team and able to contribute, and all of
the teams whose opening day roster I can confirm inde-
pendently were correctly generated using this method.

No attempt was made at this time to take into account
injuries that would delay the start of a season for a player,
but that feature could definitely be added in the future.
For instance, it was known that Kevin Durant would miss
the first four weeks of the 2015 season due to injury; his
stats should be prorated to account for that. That is
very difficult to do historically, because you would need
to know how long the team thought he would be out at
the beginning of the season, not just how long he was
actually out. This would be much easier when dealing
with the present and future. Nor was any attempt made
to consider a young player improving between seasons,
nor an older player declining between seasons, though
these would be good to implement in the future.

Once the opening-day rosters were assembled, the play-
ers stats from the preceding season were added together
to get a projected set of statistics. The main stats we
are interested in are orp, efgp, ftmr, top, win shares, and
minutes played. The rate statistics (orp, efgp, ftmr, and
top) are calculated according to their formulas, using for
instance the total number of offensive rebounds divided
by the total number of offensive-rebounding opportuni-
ties; the individual rates themselves are not averaged to-

gether in any way.
Players who did not play in the previous season are

generally given no stats, even in the case of injury. This
could be amended in the future. However, rookies are
given a projected amount of win shares and minutes
played based on the average amount of production a
player chosen in his draft position usually produces. The
procedure of figuring out how much to add per draft pick
is detailed in Section V. This amount is only added to a
team if the player will actually play with the team dur-
ing the season. Thus, Joel Embiid would not have been
added to the 2015 76ers roster as the 3rd pick because it
was known he was not going to play with the team due
to injury, but he would be added to the 2016 76ers team
provided he recovers from his injury.

Once all of the rosters have been generated, the means
and standard deviations of each of the 9 stats used for
the previous year calculations, and the 5 stats used for
the current year predictions are tabulated. Please see the
Appendix for details of how they are calculated.

2. Results

Now that I have all of the statistics needed to run the
analyses, the weights to be used in each of the distance
metrics must be calculated. This process will not be de-
tailed here, but it involves fitting the data for each game
in a season using only the 5 or 9 statistics mentioned for
each method. Since I do not want to bias the results, I
found the weights by fitting the 1990-1999 seasons, and
will perform the tests on the 2000-2014 seasons. There
were 445 individual team-seasons in this span, however
one of those team-seasons was the 2005 expansion Char-
lotte team, which cannot be analyzed because it did not
exist in the previous season and therefore does not have
any statistics. That leaves us with 444 seasons to test.

Table II displays the results of the analyses by means
of the reduced χ2, average absolute value of the difference
between the predicted winning percentage and the actual
result (this is actually the difference of the percentages
times 82 to make it easier to read), and the average stan-
dard deviation given by the prediction (again multiplied
by 82). Based off of the average differences, it appears
that that simply basing the guess for the next season’s
results off of the combined win shares on the team at
the beginning of the season gives the best results, with
the similarity methods not far behind, and the League
Average prediction doing worst of all, as expected. How-
ever, if we look at the reduced χ2 values, it is clear that
the similarity methods are making the best predictions of
their standard deviations, and they are lower as well. The
best method seems to be the Opening-Day-Roster Sim-
ilarity method, which has a near-perfect χ2/NDF , rea-
sonable average difference, and the smallest average stan-
dard deviation (other than the Repeat-Last-Year method
which vastly under-estimates the standard deviation). It
makes sense that the Opening-Day-Roster method is bet-
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Method χ2/NDF 82 · |P − p| 82 · σP

League Average 0.784 10.2 13.3

Repeat Last Year 3.098 8.2 4.4

Win Shares 0.737 7.1 9.4

Similarity Methods

Last Season 1.091 7.9 9.4

Opening-Day Roster 1.020 7.5 8.6

TABLE II. The results of each of the six different prediction
methods developed in this section. The χ2/NDF indicates
how well the errors are estimated compared to the differences
seen. The average of the absolute value of the difference be-
tween the predicted, P, and actual winning percentage, p, is
also given (scaled by 82 to represent number of games), along
with the average standard deviation (also in games). As ex-
pected, the League Average prediction has the worst results.
Repeating last year’s win total performs better in terms of
the average differential, but is severely under-estimating the
standard deviation. The Win Shares method produces the
smallest average differential, but is over-estimating its stan-
dard deviation. All of the Similarity methods produce excel-
lent χ2/NDF results, and the Opening-Day-Roster method
gives the overall best results.

ter than the Last-Season version, but it is surprising how
well the Last-Season method performs. Perhaps it is a
result of teams not making an overwhelming number of
changes during the off-season; or it could be that the
lack of defensive stats in the Opening-Day-Roster method
hurts its performance. This is a good sign, since many
decisions on trading draft picks come during the draft,
when next year’s roster may not be known. The predic-
tion from win shares alone is very promising as well, and
delightful in its simplicity. More work must be done to
obtain realistic standard deviations for it though.

VII. PUTTING IT ALL TOGETHER:
EVALUATING DRAFT PICKS IN TRADES

We’ve finally gotten to a point where we can actu-
ally evaluate a potential draft pick from a given team.
We will start by looking at the projected finishing-order
and draft-order probabilities calculated using Equation
(4) along with predictions given by one of the meth-
ods described earlier, the Opening-Day-Roster Similarity
method. I have selected 3 teams from the 2014 season,
and made predictions using that method and then plot-
ted the probabilities for where each team will finish and
draft. I tried to select one team predicted to do poorly,
another predicted to be in the middle, and one that was
likely in the playoffs. The results of these predictions can
be seen Figure 7.

The 2014 Orlando Magic were predicted to finish in the
bottom third of the league, and with a maximum likeli-
hood of drafting fourth. In fact they did draft fourth.

δ 1st Round 2nd Round Pick 1st Round 2nd Round

1 0.006 0.028 16 0.049 0.049

2 0.018 0.030 17 0.043 0.043

3 0.026 0.033 18 0.036 0.036

4 0.035 0.017 19 0.030 0.030

5 0.043 0.033 20 0.024 0.024

6 0.051 0.045 21 0.019 0.019

7 0.058 0.055 22 0.015 0.015

8 0.063 0.062 23 0.011 0.011

9 0.067 0.066 24 0.008 0.008

10 0.069 0.069 25 0.005 0.005

11 0.069 0.069 26 0.003 0.003

12 0.067 0.068 27 0.002 0.002

13 0.064 0.065 28 0.001 0.001

14 0.060 0.060 29 0.000 0.000

15 0.055 0.055 30 0.000 0.000

TABLE III. Pdo(δ) for each round for the 2014 Minnesota
Timberwolves based off of the prediction made using the
Opening-Day-Roster Similarity method. The 1st-round odds
take the lottery effects into account, while the 2nd-round odds
are based solely on finishing order.

The 2014 Minnesota Timberwolves were projected to be
a classic middle-of-the-road team, with non-zero proba-
bilities of finishing in all but the best two positions in the
league. As such, their drafting position is widely varied.
Table III displays their odds for picking in each position
in both rounds. Note that the odds above pick 14 do
not change between rounds because the lottery effects
do not come into play. Finally, the 2014 Miami Heat
were predicted to finish in the top third of the league,
and therefore are almost completely unaffected by the
lottery. This prediction correctly forecast their actual
drafting position.

A. Expectation Values

When considering a draft pick in trade, it is sometimes
useful just to think of where the pick is most likely to fall
(i.e. which spot has the highest probability), and other
times it is useful to think of the probabilities of certain
ranges where that pick could fall. If a draft pick is offered
with certain protections, say top-5 protected, then the
probability that the pick will fall inside or outside of the
top 5 picks is important. In that case, all one has to
do is to sum the probabilities of each spot up for the
two categories. Thus, the odds of the 2014 Minnesota
Timberwolves picking inside the top 5 are 0.006 + 0.018
+ 0.026 + 0.035 + 0.043 = 0.128, while their odds of
picking outside the top 5 are 1 - 0.128 = 0.872.

We can also consider the expectation value for the
picks, where the expectation value is defined as the
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FIG. 7. latexPdo(δ) for all 30 draft positions for (a) the 2014 Orlando Magic, (b) the 2014 Minnesota Timberwolves, and (c)
the Miami Heat. Predictions were made using the Opening-Day-Roster Similarity method. Orlando is an example of a team
that was projected to do poorly, finish in the second to last spot, and pick fourth; in fact they finished third from last, but
did pick in the fourth spot. Minnesota was a great example of a team projected to be in the middle of the pack; they had
a non-zero probability of finishing in all but the latex29th and latex30th spots. The pick-by-pick probabilities for Minnesota
can be seen in Table III. And the Miami team is a good example of a projected playoff team, with almost no probability of
finishing in the lottery.

weighted average of the possible draft order positions,
δ, given a prediction percentage P, σP , and is written as

< δ|P, σP >=

∑
δ

(
P(δ|P, σP ) · δ

)
∑
δ

P(δ|P, σP )
, (16)

where the sums are over all non-protected picks. If we
look at the 2014 Timberwolves again, we can calculate
their overall expectation value to be 11.7 (sum over all
δ) however, if this pick was offered in a trade, with the
first 5 picks protected, then the expectation value of the
pick that would be received would only be 12.9 (sum over
δ ≥ 6). As can be seen from the graph of their drafting
probabilities, this is right at the position of their most
likely draft slot.

B. Expected Return

Say a team is considering trading away a player who
is forecast to generate about 10 win shares over the next
5 years, and they would like to upgrade to a player who
should produce at least 12.5 win shares during that time.
They are offered trades by both Minnesota and Orlando,
who are offering their 2014 first-round draft pick just
before the 2014 season starts. Both are top-3 protected.
Which team should they trade with?

To evaluate the values of the two offers they need to
have a prediction for how well each of them will do in the
upcoming season. So they use the Opening-Day-Roster
Similarity method to generate a prediction, and figure
out the odds for each team getting each draft slot, which
we have already seen. Now, we modify our expectation
value formula slightly, by replacing the pick with win
shares to get the expected return (in win shares) from

the pick:

< ws|P, σP >=

∑
δ

(
P(δ|P, σP ) · ws(δ)

)
∑
δ

P(δ|P, σP )
, (17)

where the number of predicted win shares is a function of
the position in which the player was drafted, δ, derived in
Section V. They must still remember that each trade has
protected certain slots, and so they also need the proba-
bility of getting each team’s spot due to the protection;
this is just the denominator in Equation (17). Working
the numbers through, we see that Minnesota’s draft pick
has an expectation value of 11.53 win shares over the
next 5 years, and has a 90.9% chance of being outside
of the top 3; the upgrade is less than desired, but it is
very likely that the pick will actually be transferred to
the team in the next draft. Orlando’s pick meanwhile is
likely to be worth 18.75 win shares over the next 5 years,
a much bigger upgrade than expected, but with only a
56.5% chance of getting it this draft.

Which trade to choose in this situation can depend
on many factors, such as how quickly the team needs a
return on the trade, how willing the GM and owner are
to gamble, what the terms are if the draft pick ends up
being protected, etc. But knowing the expected return
and probability of receiving the pick in the nearest draft
allows them to make an informed decision.

VIII. CONCLUSION

The goal of this exercise was to find a way to put a
value on draft picks offered in trade. Equation (17) does
just that, providing an expected return, in terms of win
shares over the player’s first five seasons, from an offered
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draft pick based on a prediction for the team’s perfor-
mance in the coming year, and taking into account any
protections placed on the pick. Using this formula, it
is easy to make a comparison between two competing of-
fers, as well as between the draft pick and the asset being
traded. Of course, the statistic that an expected return is
calculated for in Equation (17) can be replaced with any
other statistic, all it requires is a way to calculate an pre-
diction for that statistic as a function of draft position.
Thus, the expected return in minutes played could be
calculated based on the analysis presented in this paper,
but so can rebounds, points, or any other statistic.

The prediction for expected return is only as good as
the predictions for winning percentage and standard de-
viation are. I have developed three methods that yield
consistent results, the two Similarity methods and the
forecast directly from win shares, and other methods may
be developed. Fortunately, any prediction can be fed into
Equation (17), so any improvements to the current meth-
ods, or brand-new methods developed can immediately
be turned into an expected return, and various methods
can be used for comparison purposes.

A. Future Work: Improvements

Each and every step along the way can benefit from
more work, and there is room for improvement in many
areas, some of which have already been mentioned. I have
shown that there is a slight difference between playoff
probabilities in the Eastern and Western Conferences;
an early attempt to correct for this was not successful,
so it would be good to revisit this issue and figure out
a way to increase the odds that a Western Conference
team with 40-50 wins will be relegated to the lottery.

Valuing the draft picks was done using only win shares
and minutes played in the first five seasons of a player’s
career in this paper. As has been mentioned, many other
stats could be used in the place of win shares. Several
stats could be treated individually, or a function could be
generated to create a new statistic out of those several
stats. And the number of years considered in these stats
can be easily changed as well.

The way of predicting a team’s winning percentage can
always be improved upon. I mentioned various tweaks to
some of the methods in Section VI. Some of the easiest
tweaks would be to include more than just the previous
season’s stats in the methods, accounting for injuries in

the previous season by using another season instead, up-
dating the predictions throughout the season based on
roster changes as well as adding in the current season’s
results, and developing a way to account for defense in
the the Opening-Day-Roster similarity method. Others
include obtaining the complete roster, along with any
injury reports, for each team for every day of the year
historically (necessary to improve the models); finding
the best set of statistics to use in the similarity met-
rics; making predictions for rookies performance in the
four factors to improve the Opening-Day-Roster simi-
larity method; and modeling improvements in stats for
young players, and declining stats for older players to
improve the accuracy of the roster stats.

Trying to incorporate coaching, or at least coaching
style, into the predictions would be a fertile area for im-
provement. The difficulty here is trying to disentangle a
coach’s impact on his team from the players themselves,
as well as dealing with first-year coaches, coaches on a
new team, etc. There is much value to be gained from
looking into the coaches contributions.

In this paper, I only looked at predicting the immedi-
ate next season, but since draft picks can be traded up
to seven years in advance, it may be necessary to pre-
dict teams’ fortunes even further than just next season.
It is of course possible to do this, though the standard
deviations will only get larger as the years get further
away.

For the final prediction, of expected return from the
proposed trade, a variety of other statistics could be used.
The expected salary that will need to be payed out to a
prospective pick can be nearly exactly calculated from
the known rookie scale, and would be an easy addition
to make.

Finally, I have specifically avoided calculating the stan-
dard deviation of the expected return because it is a com-
plicated value. The value

σ<wp> =
√
< wp2 > − < wp >2 (18)

gives the standard deviation of the average expected re-
turn value for that pick, but the errors on that average in
any given slot can be as many as 15 win shares (see Figure
5). Thus, citing a standard deviation of 3.1 win shares
for Orlando’s pick would make it seem much smaller than
the actual uncertainty. Coming up with a way to display
both uncertainties in the future would be helpful.

[1] http://en.wikipedia.org/wiki/NBA draft lottery
[2] http://www.cbafaq.com/salarycap.htm
[3] http://www.basketball-reference.com

Appendix A: Calculating Standard Deviations of
Rate Statistics with an Unequal Number of

Opportunities

The standard deviation of a dataset is a well-defined
quantity (I will square both sides to avoid the constant
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FIG. 8. End-of-the-year Three-point Shooting Percentages for all players in the NBA from 2009-2014, along with a Gaussian
approximation fit line using the calculated mean and weighted standard deviation. (a) shows the unweighted distribution,
which has a tail on the lower edge, and is not well fit by the Gaussian. (b) shows the same distribution where each entry is
weighted by its standard deviation; the lower edge tail is gone and the Gaussian is a much better approximation for the shape.

square-root sign)

σ2 =
1

N − 1

N∑
i=1

(pi − p̄)2 , (A1)

where p̄ is the mean of the dataset. However, that as-
sumes that each term should be treated equally. Since
the standard deviation on rate statistics depends on the
number of opportunities, and players and teams in bas-
ketball can have wildly varying numbers of opportunities
with respect to each other over the course of a season,
it makes sense to weight certain terms more than others.
Equation (A1) can then be generalized to

σ2 =
1

N∑
i=1

1
σ2
i

N∑
i=1

1

σ2
i

(pi − p̄)2 , (A2)

where the weights are determined to be the inverse of the
square of the standard deviation of the term, defined by
Equation (5).

Let us take the three-point shooting percentage as
an example. Consider the five Atlantic division teams
in 2014 with the following statistics (threem, threea):
[BOS (575,1729), BRK (709,1922), NYK (759,2038), PHI
(577,1847), TOR (713,1917)]. The mean shooting per-

centage is just

threep =

∑
i

threemi∑
i

threeai
= 0.353 . (A3)

The traditional standard deviation is 0.028, while the
weighted standard deviation is 0.025. In this example
the Knick’s 2038 attempts are nearly 18% more than
Boston’s 1729, and so their measured value carries more
weight than Boston’s as well. The difference may seem
slight, but it can make a significant difference. Plotting
the distributions with the same weights makes them ap-
pear more Gaussian than without the weights, and as a
result, the Gaussian approximation better.

To illustrate that point, consider the plots of three-
point shooting percentages I made for my project on re-
gression to the mean, which can be seen in Figure 8. It
shows the end-of-the-year three-point shooting percent-
ages for all players in the NBA in the 2009-2014 season.
Figure (a) is unweighted and shows a noticeable tail on
the lower edge of the distribution, and is poorly fit by a
Gaussian with parameters set to its mean and traditional
standard deviation. Figure (b) meanwhile shows the
same distribution, but this time with each term weighted
by its standard deviation. The tail on the low edge is
greatly reduced, because the players shooting at a lower
percentage tend to shoot less. The Gaussian approxima-
tion, using the mean and weighted standard deviation as
parameters, is a much better fit.


