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I. INTRODUCTION

When I started to look into the traditional tools that
are used to analyze basketball statistics I was surprised
to see regression to the mean coming up as often as it did.
My initial reaction was a visceral one: This is not what
regression to the mean is supposed to be used for. It is
a tool that is useful in population studies, to deal with
statistics that are completely governed by chance, and
not skill. Things like the average height of a randomly
selected group of people in a city (the more people you
measure you’ll eventually get closer to the mean of the
city as a whole, regardless of whether you started with a
string of exceptionally tall or short people), or how well a
random group of people can predict the result of fair coin
flip. But it is not useful in situations where differing levels
of skill, ability, genetics, or some other biasing factor,
come into play. Thus, if the coin that is being flipped
is not fair, and some of the people making predictions
realize that and take it into account, and others don’t,
those people’s predictions will not regress to the mean;
they have a skill that the rest of the population does not.

Basketball (and all other sports) involve people whose
skill levels are all well above average, but even among
themselves, there is a wide variation in those skills. As-
suming that a player with a hot start must cool off and
will eventually start playing more like everyone else, ig-
nores the possibility that he may be an above-average
player; and vice versa for a cool start and a below-average
player. Players do regress to a mean, but they each
regress to their own mean, their own particular skill level
over a given period of time. The trick is then to find that
skill level.

In looking more closely at some specific examples, and
following the derivation used for regression to the mean
from The Book by Tom Tango, Mitchel Lichtman and
Andrew Dolphin, I realized that the method used is
strong, but that I would implement it differently than
it appears to be used. They do appear to use the ’re-
gression to mean’ as a way of determining a player’s skill
level based on his current performance and the average
of some population of players, generally either all players
in the league or a subset of them, which is not what it
generally meant by ’regression to the mean’ in statistics
texts. This is a good idea and I was interested in fleshing
out the details. (Strong caveat here: the only methods
that I know about are ones published in books or online;
it is entirely possible, and most likely that people who
work for NBA (or other sports leagues) teams have their
own methods that are not made public. Any comments
on methods are directed towards those that I have seen.
The Book deals specifically with baseball statistics, but

it is easily generalized to any sport.)
I decided to derive all of the equations myself, and

come up with an implementation for how I would use it,
and for what purposes. I would not refer to my method
as regression to the mean, but rather making a prediction
and then refining it. The basic premise is that I would like
to determine a player’s true skill level in a given season.
Before the season starts I can make a prediction of that
skill level, based off of some criteria. Once the season
starts, I will get in new information, his current stats,
and I can use that to make a new prediction. I now have
two different predictions, based off of mutually exclusive
data; both of these guesses can be utilized in making a
final prediction of the player’s true skill, by means of a
weighted average, using the standard deviations of the
two guesses as the weights. If we call the two predictions
a and b, and call the standard deviations of a and b, σa
and σb respectively, then the weighted average prediction,
ppred, would be

ppred =

1
σ2
a
a+ 1

σ2
b
b

1
σ2
a

+ 1
σ2
b

. (1)

Getting one of the predictions is easy — the player’s
current stats will provide one of the guesses — the trick
comes in getting the other one. The methods derived and
detailed in the rest of this paper will show one method
— that of defining a population and using the statistics
of that group to determine a mean and standard devia-
tion that will be used as the prediction — but any pre-
diction could used, so long as it has a well-defined value
and standard deviation.

In Section II, I will detail how to find the mean and
standard deviation of a statistic in a given population,
which may be different than others use. In Section III, I
will discuss how to select the proper population for the
purpose desired, and the effect that the choice of popu-
lation can have on the results. In Section IV, I will show
an example usage, trying to predict a player’s shooting
percentages after January 1st based on his performance
before January 1st in that season. Finally, in Section V
I will use the best method from Section IV to predict
the shooting percentages for selected players in the 2015
season after January 1st, 2015.

II. METHOD

If it were possible to know a player’s true skill level in
a particular skill, say free-throw shooting or rebounding,
at any given time, then it would be possible to predict
his performance over any given number of attempts to
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be within a certain range. Let us call his true skill P and
assume it remains constant for some period of time. If
during that time he has a attempts to succeed (e.g. takes
a shot, or is on the floor when a rebound is available),
then he will be predicted to succeed on

s̄ = P× a (2)

of those attempts. However, due to the nature of prob-
abilities and randomness, he may not succeed exactly s̄
times, but instead we can define a range around s̄ of pos-
sible values for the number of successes. The probability
for succeeding s times in a attempts, given a true skill of
P is given by the binomial distribution

PP(s, a) =
a!

s!(a− s)!
Ps(1− P)a−s . (3)

The value of s with the highest probability is s̄, but there
is a wide range of values of s that have non-zero prob-
ability, and his performance in this particular set of a
attempts could be anywhere in that range. The stan-
dard deviation,

σs =
√
aP(1− P) , (4)

defines how spread out the results (s, the number of suc-
cesses) can be. If repeated measurements were made of
exactly a attempts, with the same true skill P, then 68%
of the resulting values for s would lie within 1σ of s̄ and
95% would lie within 2σ.

Those formulas are correct, but they presuppose
knowledge of P, which impossible to know. Instead, we
must work backwards, using measured values of s suc-
cesses in a attempts to infer what P is. Perhaps the main
job that a sports statistician has is trying to figure out
each player’s true skill. The best guess at P based only
on measured performance will always be s/a where all
a attempts were made during a period when P can be
reasonably assumed to be constant. This period of con-
stancy can be taken to be a single game, or a month, or
a season, or a career; it could include attempts made in
practices, if accurate records were kept, or from games in
any other setting; the choices of what period and which
attempts should be considered depends on the context.
We will call our best guess at P p, which will be defined
by

p = s/a , (5)

and the standard deviation of p (the range in which we
should expect the true skill P to be) is

σ =

√
p(1− p)

a
. (6)

From the equation for the standard deviation it is clear
that the greater the number of attempts, the smaller the
standard deviation is, and thus the better a guess at P p
is. Or more precisely,

lim
a→∞

p(a) = P , (7)

where p(a) simply indicates that p is a function of a.

Each of these values has an uncertainty associated with
it. For p, the uncertainty is known as the standard devi-
ation of the mean, and is defined by

σp =
σ√
a

=

√
p(1− p)
a

; (8)

and for the standard deviation, the uncertainty is

σσ =
1√

2(a− 1)
. (9)

It is of course impossible for a basketball player to at-
tempt an infinite number of shots, or be a part of an
infinite number of possessions, especially all while at the
same skill level. Kareem Abdul-Jabaar holds the NBA
record for field goal attempts in his career at 28,307, with
a shooting percentage of 0.559, which leads to a stan-
dard deviation of 0.003. That is as small as one could
ever hope to get a standard deviation on a shooting per-
centage, but it is not even valid because his true skill
most likely changed from season to season. Thus, there
is a fundamental limit to how well we can determine a
player’s true skill, especially over shorter ranges of time
than a 20-year career. So it is helpful to have other ways
of guessing a player’s true skill. Then, the multiple ways
of predicting that true skill can be combined together to
give a better prediction.

A. Predictions from a Population

One of the many ways to predict a player’s true skill is
to infer how well he will do based on how well players sim-
ilar to him fare. The basic idea is that if you choose the
population of similar players well, then a good estimate
for the player’s true skill will be the mean of those play-
ers’ abilities, and the range in which his abilities should
be found will be related to the standard deviation of the
population’s abilities.

We will cover how to select the right population in
Section III, but for now assume that we have a proper
population of players’ statistics, which consists of a set
of pairs of values (si, ai), where the subscript i indicates
that this pair is for the ith player or season. These two
values are all that is needed to calculate pi and σi for the
pair, according to Equations (5) and (6). Now we need
to combine them together. Each pair will have some sta-
tistical error, σi, but it is important to note that each
pair will also have it’s own true skill, Pi, and thus when
combining them, there will be some spread in true skill.
We can safely assume that the statistical errors will be
distributed normally, and, as long as the population was
chosen well, the true skill should also be distributed nor-
mally. Therefore the distribution of all of the pairs in the
population should follow Gaussian statistics.
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In Gaussian statistics, the probability for obtaining a
value p, given a mean of p̄ and standard deviation σ is

Pp̄,σ(p) =
1

σ
√

2π
e−(p−p̄)2/2σ2

. (10)

This function is equivalent to Equation (3) for large val-
ues of a. For our purposes, that will generally be the
case. So each pair has its own version of Equation (10)
with its own p̄i and σi.

When we combine all the pairs together we get a Gaus-
sian that is appropriate for that group, with

p̄pop =

N∑
i=1

si

N∑
i=1

ai

, (11)

where N is the number of pairs in the population. The
standard deviation for the population however, is not
Equation (6), because that assumes that the true skill
is the same for all pairs; instead the standard deviation
must account for the spread in skills as well as the sta-
tistical standard deviations of each pair. We can write it
as

σpop =
√
σ2
skill,pop + σ2

random,pop (12)

where each of those terms will be defined below, and they
may be combined this way because we assume that the
two sources of error are uncorrelated.

The true skill level is what is trying to be calculated,
and so the standard deviation of that skill, σskill,pop, can-
not be directly determined, but it is possible to calculate
it from the other two quantities, which can be measured,
as

σskill,pop =
√
σ2
pop − σ2

random,pop . (13)

B. Calculating σpop

The standard deviation of a dataset is a well-defined
quantity (I will square both sides to avoid the constant
square-root sign)

σ2
pop =

1

N − 1

N∑
i=1

(pi − p̄pop)2 . (14)

However, that assumes that each term should be treated
equally. Since each pair can contain a significantly differ-
ent number of attempts, and the standard deviations are
different as well, it makes sense to weight certain pairs
more than others. Equation (14) can then be generalized
to

σ2
pop =

1
N∑
i=1

wi

N∑
i=1

wi(pi − p̄pop)2 , (15)

where wi is the weight for the ith pair. Treating this as
a basic weighted average, the weights are determined to
be the inverse of the square of the standard deviation of
the pair, defined by (6),

wi =
1

σ2
i

. (16)

Which leads to a final formula for calculating the stan-
dard deviation of the dataset of

σ2
pop =

1
N∑
i=1

1
σ2
i

N∑
i=1

1

σ2
i

(pi − p̄pop)2 , (17)

C. Calculating σrandom,pop

The standard deviation due to statistical fluctuations
about the mean of the dataset cannot be determined from
binomial statistics as in Equation (6) because that equa-
tion assumes that the skill level is constant across all
measurements, which is not the case here. It is deter-
mined by a weighted average of the standard deviations
for each pair, using the uncertainty of the standard de-
viation (see Equation (9)) as the weights. Thus,

σ2
random,pop =

1
N∑
i=1

1
σ2
σ,i

N∑
i=1

1

σ2
σ,i

σ2
i . (18)

D. Summary

Using Equations (17) and (18), it is now possible to
determine the standard deviation in the skill level of the
dataset from Equation (13). Now we can make a predic-
tion of a range for the player’s skill, which is

pprediction = p̄pop ± σskill,pop . (19)

Thus we can see that the prediction is going to be very
strongly influenced by the population that is chosen.
How well the prediction will do will be based on p̄pop,
which requires choosing players that are in fact similar
to the player in question; how tightly that value can be
constrained depends on how similarly those players per-
form. Choosing the right population is very important
and requires careful forethought.

III. SELECTING THE POPULATION

For the purposes of this paper, we are considering
how to predict an NBA player’s true skill level in any
of a number of different statistical categories: field-goal
shooting percentage; free-throw shooting percentage; re-
bounding percentage; etc. But before we select a popu-
lation to use, we must first consider the time-frame for
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which the prediction needs to be valid. Is it a prediction
for the next game? The next month? The playoffs? The
next season? Or his entire career? Each of these pos-
sibilities may require a different population to make a
reasonable prediction. Recall that skill levels for a given
player will change over time, so that often it can only be
assumed that he has a constant skill level over the course
of a single season. Even that may be a stretch, but, bar-
ring an injury that forces him to miss significant time in
the middle of a season, it is a reasonable assumption. It
may be useful to use longer stretches than a single sea-
son, say 150 games, or two seasons, so in general we can
call these chunks of games gamesets.

The gamesets can start and end at any point in time,
but it is generally preferrable for the games to all be
contiguous (i.e we consider all games between two dates
without excluding any), but there are sometimes reasons
for excluding a game (e.g. the player didn’t have any
attempts for the stat in question that game, or he was
injured at the opening tip-off). All games in a single
season would be one example of a gameset; sets of 50
games would be another. If a player played 250 games
over 5 seasons, he would have 5 gamesets of seasons, and
5 gamesets of 50 games, but they may include different
games. The size of the gameset should be proportional
to the time-frame the prediction needs to be valid. The
prediction for a season come from a population made up
of gamesets of seasons, or chunks of 50-100 games, but
shouldn’t include datasets of 500 games or entire careers.

The next choice for the population is what players
should be included. Since we are only considering NBA
players, a good first choice at a population would be all
NBA players. It is clear that by lumping all NBA players
together the standard deviation will be quite large, be-
cause we are making no attempt finding similar players,
other than having played in the NBA. Another choice
would be all players of the same position (point guard,
shooting guard, small forward, power forward, or cen-
ter). This will decrease the standard deviations slightly;
this attempts to separate players by skill as in general
guards are more similar to other guards than they are to
centers. However, it may create complications for play-
ers who play multiple positions, and players who don’t
play like other players at their position (e.g. a center
who regularly shoots three-pointers). Another option is
to use some metric to determine which players are most
similar to the player in question; this will be discussed
further below.

When making a prediction we can only include games
that have come before the prediction (this is obvious
when making predictions about the present, but when
make predictions for the past to see if the method works,
it is a necessary requirement). But should we include all
games by all players in all seasons prior to the prediction?
Given the changes in rules (shot-clock, three-point line,
restrictions on styles of defense, etc), style of play, and
overall talent that happens over time, it seems wise to
restrict the pool of games to choose from to some num-

ber of recent seasons. Using only the previous season
as the pool to select from would be reasonable, but in-
cluding more seasons increases the statistics and leads
to better results; however, including too many seasons
may change the skill level too much, or ignore newer rule
changes. Five seasons seems like a reasonable number
of previous seasons to include when considering all NBA
players, or all NBA players of a certain position. If using
only select gamesets from select players (i.e. when using
only a small number of similar player as determined from
some metric), then it might be useful to consider further
back than just five years if not enough similar players
are found. If considering a stat like free-throw shooting
percentage, then perhaps a wider time-frame could be
used, since there have been no significant rule changes
that would affect that percentage. When considering a
player’s own past performance, then all games in his ca-
reer should be allowed to be used, and how many are
actually used will depend on the context.

Thus, when selecting the population to use to make
the predictions from Section II, it is important to con-
sider the time-frame that you are interested in predicting,
and therefore the size of the gamesets; the players which
should be included, whether all players, a subset of play-
ers, or the previous performance of the player in question
himeself; and finally how far back in time you’re inter-
ested in going. The answers to each of these questions
depend on the context of the prediction and how precise
you want to be.

A. Distance Metric

The idea of using a metric to determine which players
should be in the population was mentioned in the last
section. I won’t go into exhaustive detail here, because
it was already discussed in my previous work, but I will
repeat the formula here, as I have modified it for the
current purpose. The basic thought is to define a distance
between two different data points, in this case seasons.
We are interested in finding seasons that are close to our
season in question. Thus, we define the distance metric
as

d2
ij =

4∑
k=1

wk[
sik − s̄

i,pop
k

σi,popk

−
sjk − s̄

j,pop
k

σj,popk

]2 , (20)

where dij is the distance between seasons i and j, with
season i being the season in question; the sk are the statis-
tics we will be using; s̄i,popk is the mean of sk for the pop-
ulation from which season i was drawn (i.e. if season i

is from the 2014 season, then s̄i,popk is the mean of sk
for all players in the 2014 season); σi,popk is likewise the
standard deviation for the population from which season
i was drawn; and the wk are the weights assigned to those
statistics.

Equation (20) can be used with any number of different
statistics, so long as they have well-defined means and
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standard deviations. Given a season that you would like
to find the N most similar seasons, it is only necessary to
search through all the possible player-seasons available
(this may be limited depending on the objective) and
calculate dij for each pair, and then select the N closest.

IV. EXAMPLE: SHOOTING PERCENTAGES

Let us take as an example predicting three different
shooting percentages for a player from January 1st un-
til the end of the season, given his shooting percentages
before January 1st of that season. The three different
shooting percentages are two-point shooting, three-point
shooting, and free-throws. I am using three different
shooting percentages to show how different stats need to
be treated different. Since we are making our predictions
on January 1st, we already have a predictions of the true
skill levels for this player in this season, which are just
his current shooting percentages, with their standard de-
viations. But we can come up with a better guess for
his true skill level by defining a population, obtaining a
mean and standard deviation, and then applying Equa-
tion (1). The question is: which population should be
used to generate the mean?

A. Populations Used

We will try out several different populations and see
how well they each perform. The populations are listed
below. In all populations, only players from seasons af-
ter 1985 are considered, and the player had to play at
least 100 minutes (just over two full games worth) in the
season.

• The full-season results for all players in the NBA
over the previous five NBA seasons. Each year from
1990-2015 will have its own mean and standard de-
viation that is derived from the five seasons pre-
ceeding it. The means and standard deviations are
derived using Equations (11) and (13).

• The full-season results for all players in the NBA
over the previous five NBA seasons, broken down
by the five different positions. Each year and each
position from 1990-2015 will have its own mean and
standard deviation derived from Equations (11)
and (13).

• The last 50, 60, 70, ..., 150 games, as well as career
totals, for the player in question. Each gameset will
be treated separately, and includes the last X num-
ber of games the player played before the season
in question started. The mean and standard devi-
ations are derived using the binomial formulas in
Equations (5) and (6). In order for this prediction
to be made, the player must have played X number
of games so far in his career before the start of the

season. If he has played less than that many games,
no prediction will be made using this method.

• The next season results of the 100 most similar
players to the player in question, as defined in Sec-
tion III A, from the five seasons prior to his last
season. Thus, if predicting for the 2015 season, his
2014 season results would be used to find similar
players in the 2009-2013 NBA seasons. The statis-
tics used in Equation (20) are the percent of possi-

ble minutes played in the season ( minutes played
48∗games played ),

the number of shots of the type under study (two,
three, or free throw) attempted per minute played

( shots attemptedminutes played ), and the shooting percentage for

the type of shot under study; the weights are 0.25,
0.25, and 0.5, respectively. The means and stan-
dard deviations of these next season results are de-
rived using Equations (11) and (13). In order for
this prediction to be made, the player must have
played at least 100 minutes in the season immedi-
ately preceeding the one in question, and attempted
a shot of the type under study at least once every
100 minutes of game time. For seasons to be con-
sidered close to the season in question, the player
must have played at least 100 minutes in the season
in question and also the season immediately follow-
ing it. Note that this method cannot be used for
rookie seasons.

Each of these methods will be applied to every season
of every player who plays at least 20 games before Jan-
uary 1st of that season with at least one shot attempt of
the type under study, and at least 20 games after Jan-
uary 1st of that season with at least one shot attempt
of the type under study. These restrictions are set to
ensure that there are enough attempts both before and
after January 1st to have a reasonable shooting percent-
age to make predictions and comparisons. By default,
the strike-shortened 1999 and 2011 seasons are excluded
as no players had more than 20 games before January 1st

in those years.

B. Assessing the Quality of the Predictions: χ2

To determine how well the predictions do, the pre-
dicted shooting percentages will be compared to the ac-
tual shooting percentages after January 1st, taking into
account the standard deviations of each. This is done
using the χ2 method. χ2 is computed as

χ2 =
∑

players

(pplayerpred − pplayermeas )2

σ2
ppred

+ σ2
pmeas

, (21)

where the sum is over all player-seasons that a prediction
was made for, ppred is the predicted shooting percentage,
σppred is the standard deviation of that percentage, pmeas
is the measured shooting percentage, and σpmeas is the
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standard deviation of that percentage calculated using
Equation (6). The reduced χ2 is just χ2/NDF , where
NDF is the number of degrees of freedom, which in this
case is just the number of seasons analyzed minus 1.

A reduced χ2 of near 1 is considered optimal. This es-
sentially means that the standard deviations associated
with the predicted means are commensurate with the ac-
tual differences seen in the data. If the reduced χ2 is near
1 for several of the predictions, then the result with the
smaller standard deviation is considered better, since it
gives a more precise prediction; although it is also impor-
tant to note the number of games for which a prediction
can be made using that method. For instance, using the
previous 1,000 games for a player to make a prediction
may give an excellent prediction, but it would only be
possible for a handful of players, and so it is not as useful
as one that can be used for a greater number of players.

C. Data

The data used in this analysis were obtained from the
Basketball Reference website, which has the statistics for
every professional basketball player in NBA and ABA
history. The game-by-game stats were obtained for ev-
ery game played by all players whose careers ended after
1985. Thus, for a player whose 10-year career ended in
1982, all of his games were obtained, even those from
before 1985. This was done to ensure career statistics
were able to be easily generated. For some seasons be-
fore 1985, certain statistics are not recorded, for instance
the number of field goals attempted for each game, only
the number of made baskets was available, however the
full-season stats included the total number of attempts.
This is why 1985 was used as a cut-off.

The cuts placed on the data were mentioned when
describing each of the populations used. The position
played by a player is not recorded on a game-by-game
basis in the statistics obtained, but only in the season
summary. Players who are listed as playing multiple po-
sitions during a season have their full stats added to both
positions when separating players by position. This is
done because it is unknown how many games were played
at each position, and it is possible that during certain
games he may even play multiple positions, so it would
be very difficult to ascertain how to properly split up the
statistics. In making predictions for his skill, the posi-
tion listed first was used, as it is considered his primary
position. Strike-shortened seasons (1999, 2011) are not
included in the study, but are included in career statistics
and groups of the last X (50, 60, ..., 150) games.

D. Results

The results of the different test populations can be seen
in Table I for two-point shooting percentages, in Table
II for three-point shooting percentages, and in Table III

for free-throw shooting percentages. The tables have 17
different populations, the ones I’ve mentioned so far, as
well as well as a second entry for League and Position
entries, indicated with a (d). These two extra entries are
the values for the League and Position predictions only in
games in which a prediction was made using the distance
method; this just allows us to compare apples to apples.

It should be noted here that the standard deviations for
the League and Position populations will by definition be
larger than any other subset of players. Essentially what
that prediction does is to predict the exact same shooting
percentage and standard deviation for every player in the
league, or every player in the league at a given position,
in a given season. It has no a priori bias for any player.
It is a fairly simple prediction, just assume everyone will
shoot at the league average for the last five years, and
the spread should be roughly the same as it was over the
last five years. It is almost guaranteed to be right, it’s
just not terribly useful, because it treats all players the
same and thus has a large spread. It’s main usefulness is
that it can be applied to all players and seasons.

The standard deviations for the Last X number of
games and career populations are naturally much smaller,
and get smaller as the number of games increases. This
is because I am using only the binomial standard devia-
tion, which gets smaller as more attempts are added. It
does not take into account skill levels varying with time.
It would be necessary to come up with a way to account
for this before putting these to more use. It’s main ben-
efit is that it uses the player’s own statistics to generate
a prediction. A drawback though is that it can only be
used after a player has played a certain number of games
in his career, which means it cannot make predictions for
all players.

The distance method combines the benefits of the other
two general methods: it has well-defined standard devi-
ations, that are appropriate for the average differences
seen, and it is personalized to each player. It still cannot
make predictions for all possible seasons, as it requires
that the player have played in the previous season, but
it still is able to make predictions for nearly 90% of the
possible seasons. The fact that such a simple distance
metric, including only minutes played per game, shots
attempted per minute played, and shooting percentage,
performs so well is encouraging. In the Conclusion I will
discuss ways to make it better.

1. Two-Point Shooting Percentages

Looking at the two-point shooting percentage results
in Table I, we can see that the League, Position, and
Distance populations have very good values of χ2/NDF ,
very close to 1. This indicates that the analysis done
in this paper has been done correctly. The method is
projecting reasonable means, and the standard devia-
tions do a good job of accounting for the spread seen
in the data. The Last X populations have slightly higher
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Population χ2/NDF # Seasons avg diff avg σpop,pred

Last 50 1.202 4377 0.032 0.022

Last 60 1.222 4292 0.031 0.020

Last 70 1.244 4171 0.031 0.019

Last 80 1.267 4003 0.031 0.018

Last 90 1.284 3886 0.031 0.017

Last 100 1.307 3829 0.031 0.016

Last 110 1.324 3779 0.030 0.016

Last 120 1.338 3707 0.030 0.015

Last 130 1.354 3627 0.030 0.015

Last 140 1.365 3546 0.030 0.014

Last 150 1.387 3439 0.030 0.014

Career 1.618 5039 0.033 0.013

League 1.084 5039 0.033 0.026

Position 1.069 5039 0.032 0.025

Distance 1.102 4461 0.030 0.021

League(d) 1.090 4461 0.033 0.026

Position(d) 1.076 4461 0.032 0.025

TABLE I. Results for the two-point shooting percentage tests.
Note that the number of games is different for most of the
populations. The top part of the table uses the player’s own
games as the population, while the bottom part of the table
uses some subset of the league in the last five years as the
population. The League(d) and Position(d) entries are there
to illustrate how well the League and Position population pre-
dictions do only in seasons for which a prediction can be made
using the distance method. The avg diff column is the average
absolute value of the difference between the predicted result
and the measured result. The avg σpop,pred column is the av-
erage standard deviation for the prediction coming from the
population.

χ2/NDF values, indicating that the standard deviations
have been underestimated. This is somewhat expected,
as I used the binomial standard deviations and made no
attempt to account for varying skill levels. Within 50
games this shouldn’t cause such an issue, but over 150
games it certainly might.

All of the average differences between the predicted
and measured values fall in a range from 0.030-0.033,
while the standard deviations show a bigger range. The
distance calculation seems to be the best, with a rea-
sonable χ2/NDF value, the smallest average difference
among the group and standard deviations that are well
below those of those of the other league-wide derived av-
erages.

2. Three-point Shooting Percentage

Again, the League, Position, and Distance metrics have
significantly better χ2/NDF values than the Last X
games populations, however those are improved here as
well, perhaps indicating that three-point shooting skill

Population χ2/NDF # Seasons avg diff avg σpop,pred

Last 50 1.129 1894 0.043 0.030

Last 60 1.141 1840 0.042 0.029

Last 70 1.138 1766 0.041 0.027

Last 80 1.149 1703 0.041 0.026

Last 90 1.156 1665 0.040 0.024

Last 100 1.177 1625 0.040 0.023

Last 110 1.186 1588 0.039 0.023

Last 120 1.195 1547 0.039 0.022

Last 130 1.192 1508 0.039 0.021

Last 140 1.210 1457 0.039 0.020

Last 150 1.210 1409 0.039 0.020

Career 1.358 2164 0.042 0.019

League 1.040 2164 0.044 0.035

Position 1.042 2164 0.043 0.034

Distance 1.038 1977 0.041 0.029

League(d) 1.022 1977 0.043 0.034

Position(d) 1.023 1977 0.043 0.034

TABLE II. Results for the three-point shooting percentage
tests. See Table I for a description of the fields.

changes less over time than two-point shooting skill.
Here, it is clear that the distance method gives the

superior results. The average difference is a little bit
less, and the average standard deviation is a full per-
centage point lower than the other two methods. Note
that there are significantly fewer seasons included be-
cause fewer players shoot three-point shots with regular-
ity.

3. Free-Throw Shooting Percentages

Interestingly, the free-throw shooting percentage
proves to be the most difficult to predict. The χ2/NDF
values for all populations are worse here than for the
other shooting percentages. I think the reason this hap-
pens is that the distribution for free-throw shooting per-
centages are not distributed normally. Figure 1 shows
the distribution of the shooting percentages (weighted
by their standard deviations) for each of the three dif-
ferent kinds of shot for the years 2009-2014. The line
on each figure is a Gaussian function with the mean and
standard deviation as calculated from Equations (11) and
(13). The two- and three-point shooting percentage dis-
tributions are very well-matched by the Gaussian approx-
imation, but the free-throw shooting percentage is not,
largely because the mean is so close to 1. Since it is not
possible to record a percentage over 1, the Gaussian is
therefore asymmetrical, and the mean is lower than it
should be. In order to improve these predictions it will
be necessary to find a different way to define a mean and
standard deviation for these points. This can be accom-
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Population χ2/NDF # Seasons avg diff avg σpop,pred

Last 50 1.537 2171 0.038 0.022

Last 60 1.607 2116 0.038 0.021

Last 70 1.644 2045 0.038 0.020

Last 80 1.684 1973 0.037 0.019

Last 90 1.714 1930 0.037 0.018

Last 100 1.763 1887 0.037 0.017

Last 110 1.793 1834 0.037 0.016

Last 120 1.829 1794 0.037 0.016

Last 130 1.857 1746 0.036 0.015

Last 140 1.894 1702 0.036 0.015

Last 150 1.938 1649 0.036 0.014

Career 2.450 2468 0.041 0.014

League 1.234 2468 0.043 0.036

Position 1.240 2468 0.042 0.035

Distance 1.183 2294 0.038 0.030

League(d) 1.216 2294 0.042 0.036

Position(d) 1.222 2294 0.041 0.034

TABLE III. Results for the free-throw shooting percentage
tests. See Table I for a description of the fields.

plished with the use of fitting functions to determine the
mean and employing asymmetrical standard deviations,
but that’s another rabbit hole entirely, and the subject
of another paper. That being said, the distance method
again provides the best average differential and average
standard deviation, however it is clear that the current
method is not all that accurate.

E. Discussion

From the predictions that have been presented in this
section, it is clear that the method we have outlined is a
robust method, producing reliable estimates for a player’s
mean shooting ability, while also providing a good range
around that mean in which we should reliably be able to
expect to find his actual results. The only real caveat
is what we saw from the free-throw shooting predictions:
we require that the shooting abilities be distributed nor-
mally, which may not always be the case. In those cases,
another method of defining a mean and standard devia-
tion must be developed and utilized. As I mentioned,
using asymmetric standard deviations results in much
better agreement.

It is also apparent that the distance metric does a fairly
good job at picking similar players. Since the same ba-
sic method is used to determine the mean and standard
deviation for the prediction here as with the League and
Position methods, albeit with significantly fewer entries,
it stands to reason that those values are being computed
correctly. Thus, we should expect a χ2/NDF of near
1, so long as we have chosen our population well. It

is apparent from the χ2/NDF values for the two- and
three-point shooting percentages that populations have
been chosen well. The advantage here is that the aver-
age standard deviation has gone down by almost a full
percent in both instances, which is a huge improvement
in precision. I again point out that this is a very simple
method at the moment, with only three parameters. In-
troducing more parameters should lead to better results,
although there is a limit to how well anything can be
predicted.

Going forward, it seems a reasonable plan to use the
distance method to make any predictions where there
exists a prior season to use to find similar players; and
where that is not available, it is acceptable to use the
broader League-wide averages.

V. 2015 PREDICTIONS FOR 76ERS

A useful prediction at the moment is: how well will the
some current NBA players do in the 2015 NBA season. I
have thus chosen to look at the current 76ers roster, and
make predictions on their shooting abilities for the rest
of the 2015 season. Predictions are only made for players
who attempted at least 1 shot of each kind in 20 games
before January 1st, 2015. The results can be seen in
Table IV. Note that Robert Covington, K.J. McDaniels,
and Nerlens Noel are in their first qualifying years (over
100 minutes played), and so don’t have distance method
predictions (Also Note: It was very interesting to me to
see that Robert Covington has a prediction for three-
point shooting, but not two-point shooting. It seems he
only attempted a two-point shot in 19 games, while he
attempted a three-point shot in 20 games. The game
he shot only three-pointers? December 12, 2014 against
Brooklyn, when he made 6/10 threes. I guess it makes
sense why he only shot threes that game!)

VI. CONCLUSION

The results of this experiment have been very positive.
The equations derived for the predictions are different
than those used elsewhere, but stand up to the reduced
χ2 test. I used a different set of data than others might
use in making my predictions, and different methods, and
still came up with very reasonable results. I believe that
my method is stronger than a method that relies on how
other players are doing in the current season to make a
prediction. Since the league does not change significantly
over a 5-year period, it is justifiable to use that data to
make predictions for the year immediately following that
period. Using five seasons worth of full-year data makes
it much easier and more reliable to determine the league
average and the standard deviation in skill. Plus, there
is no danger of biasing the data with the player you are
trying to study’s own stats. Thus, I am very comfortable
with these predictions, but wouldn’t refer to my method
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FIG. 1. The shooting distributions from 2009-2014 for (a) two-point, (b) three-point, and (c) free-throw percentages, weighted
by the standard deviations of the entries. The line on each figure is a Gaussian with the measured mean and standard deviation.
Note that (a) and (b) are well-defined by the Gaussian, while (c) is asymmetric, and the agreement is much worse.

Name pleague σleague pdistance σdistance

Two-Point Shooting Percentage

Michael Carter-Williams 0.436 0.026 0.445 0.020

Luc Mbah a Moute 0.475 0.031 0.469 0.027

K.J. McDaniels 0.483 0.033 N/A N/A

Nerlens Noel 0.455 0.029 N/A N/A

Henry Sims 0.506 0.029 0.496 0.020

Hollis Thompson 0.476 0.038 0.485 0.028

Tony Wroten 0.480 0.029 0.481 0.021

Three-Point Shooting Percentage

Michael Carter-Williams 0.298 0.038 0.314 0.026

Robert Covington 0.399 0.037 N/A N/A

Luc Mbah a Moute 0.307 0.038 0.297 0.038

K.J. McDaniels 0.325 0.037 N/A N/A

Hollis Thompson 0.352 0.037 0.361 0.025

Tony Wroten 0.314 0.036 0.316 0.029

Free Throw Shooting Percentage

Michael Carter-Williams 0.651 0.043 0.665 0.038

K.J. McDaniels 0.763 0.046 N/A N/A

Henry Sims 0.770 0.047 0.773 0.038

Tony Wroten 0.673 0.038 0.662 0.036

TABLE IV. Predictions for the shooting percentages after
January 1st, 2015 for 76ers players who have attempted a
shot of each type in at least 20 games before January 1st,
2015. Two predictions are given, one using the league av-
erages and mean, and the other using the distance method.
Players with an N/A in the distance columns do not have a
distance prediction because they did not play enough in the
2014 season.

of predicting a player’s future performance as regressing
to the mean, rather I would call it refining a prediction.

The distance metric used in this paper is infinitely ex-
tendable. Any combination of statistics can be used to
determine similar players. The completely bare-bones
set used in this paper produced excellent results, but that
can be improved with other statistics. For instance: only
single seasons were used here, but two or three seasons
could be used, or career data; a cut could be placed on
age, such that only players within 5 years of the player’s
age would be considered; offensive rebounding could be
included for two-point shooting percentages, as put-backs
are a common way of getting more two-point shots; the
ratio of two- and three-point shots to the total number
of shots could be used; etc. Also, while it was only used
for shooting percentages here, it can easily be applied to
any kind of percentage, rebounding, assists/possession,
etc, so long as they are distributed normally.

While what was done in this paper was done uniformly
for all players in the league meeting a certain criteria, the
approach can and should be tailor-made for each player
individually, and for the purpose for which you want to
use the prediction. Once the basic formulas are set up,
they can serve any number of purposes.


