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Introduction

Quantum Chromodynamics

What is happening inside of a nucleon?

Nucleons are made of quarks and gluons

QCD is the theory of how quarks and gluons interact

The charge term for QCD is called color charge and comes in three
forms: red, green, and blue

Quarks and gluons carry color charge, as well as electromagnetic
charge

How can we study what is happening inside of a nucleon?
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Introduction

Baryon Spectroscopy

Photons can be used to probe nucleons

A photon strikes a nucleon, which absorbs the photon and enters an
excited state briefly before returning to the ground state

It returns to the ground state by emitting baryons and mesons

The spectrum of excited nucleon states, or resonances, is discrete

Excited states are characterized by

Total Angular Momentum, J
Parity, P
Mass
Width/Lifetime
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Introduction

Resonances

The PDG currently lists 15 resonances whose presence is likely

There are an additional 11 states that have been detected, but not
confirmed

Theory predicts more than twice as many states: missing baryon
problem

Simplify by looking at a single decay product

We will attempt to probe the resonances by looking at one particular
decay product, the ω meson
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Introduction

The ω Meson

Spin-1, or vector, meson

Rest mass = 782.59±0.11 MeV

Width = 8.49 MeV → Lifetime = 7.75x10−23s

Charge = 0

Isospin = 0

Can only couple to N∗ states, not ∆∗s

Branching Ratios:

π+π−π0 → 89.1%
π0γ → 8.92%
π+π− → 1.70%
All others → 0.28%

We will be looking at the π+π−π0 decay channel
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Introduction

Methodology

To perform a complete analysis of ω photoproduction, the elements of
its spin density matrix (SDM) must be measured

The method used to extract the SDM elements (SDMEs) is to run a
unbinned expanded maximum likelihood fits of the four vectors using
partial wave amplitudes

Use the parameters from that fit to calculate the SDMEs

The formalism has been developed over the last few years to deal
with polarized photons

Determine which resonances are important for ω production using
partial wave analysis

Knowledge of the SDM will help constrain the partial wave analysis

Adding in photon polarization increases analyzing power for PWA
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Data Selection

Jefferson Lab

The data for this analysis was taken at Jefferson Lab in Newport
News, VA, using the CEBAF Large Acceptance Spectrometer (CLAS)

Jefferson Lab utilized a continuous electron beam, with energies up to
6 GeV, that is converted to a photon beam via bremsstrahlung
reactions for the experiments analyzed here

The photon beam can have linear or circular polarization or be
unpolarized

The experiments analyzed, g1c and g8b, used an unpolarized liquid
hydrogen target with a circularly/linearly polarized photon beam
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Data Selection

The g1c Dataset

Collected in October and November of 1999

4.5 billion triggers

Unpolarized target

Three different beam energies:

3.115 GeV - No polarization values recorded (not analyzed)
2.897 GeV - Incomplete normalization values
2.445 GeV

Circularly polarized photons

Degree of circular polarization determined from Maximon and Olson
relation

ζc =
k(εbeam + 1

3εrecoil)ζbeam

ε2beam + ε2recoil −
2
3εbeamεrecoil
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Data Selection

The g8b Dataset

Collected in July and August of 2005

10.5 billion triggers

Unpolarized target

Linearly polarized photons (coherent bremsstrahlung)

Five different coherent edge settings from 1.3 GeV - 2.1 GeV

Polarization in PARA and PERP directions

Degree of linear polarization determined from tables based on photon
energy and the instantaneous coherent edge
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Data Selection

Event Selection

Require detection of p, π+, and π−

Apply ELoss, tagger and momentum corrections

Require events meet the requirements:

| ~pp| ≥ 350 MeV
0 ≤ missing mass ≤ 450 MeV
Missing mass off proton within 25 MeV of ω mass, 782 MeV
Confidence Level from 1C kinematic fit to γp → pπ+π−(π0) ≥ 10%
Pass PID, fiducial volume, and TOF paddle cuts
cos θπ0

CM > 0.99

Event-based Q-values to weight signal and background events

g1c: 650,000 ω events in 1720≤
√

s ≤2470 MeV

g8b: 2,900,000 ω events in 1720≤
√

s ≤2210 MeV
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Spin Density Matrix Elements

Spin Density Matrix

The spin density matrix of a vector meson photoproduced from an
unpolarized target can be thought of as the sum of four 3x3
Hermitian matrices

ρ0 - Any photon polarization
ρ1−2 - Linear photon polarization
ρ3 - Circular photon polarization

Each of these matrices contains 9 complex values, but the properties
of being a Hermitian matrix and parity reduce that number to 5 real
values for each matrix

All 5 values cannot be measured for each matrix

The next slide shows each matrix, the measurable elements are
underlined
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Spin Density Matrix Elements

Spin Density Matrix

ρ0 =


1
2(1− ρ0
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. . 1
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00)


ρ1 =

 ρ1
11 Re{ρ1

10}+ i ∗ Im{ρ1
10} Re{ρ1

1−1}
. ρ1

00 −Re{ρ1
10}+ i ∗ Im{ρ1

10}
. . ρ1

11


ρ2 =

 ρ2
11 Re{ρ2

10}+ i ∗ Im{ρ2
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Spin Density Matrix Elements

Results

Results presented come from mother fit

Amplitudes from J=1/2 up to J=11/2, both parities

Previous experiment, g11a

The three ρ0 elements from g8b are presented compared to the
results from g11a

Then the ρ1 and ρ2 elements from g8b and the ρ3 elements from g1c
will be presented

Errors are calculated using the bootstrap method

The g8b data is in black, the g11a data is in red, and the g1c data is
in blue when presented together
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Spin Density Matrix Elements

ρ0
00 in g8b
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Spin Density Matrix Elements

ρ0
00 in

√
s = 1825 MeV bin
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Spin Density Matrix Elements

ρ0
00 from g8b (black), g1c (blue), g11a (red)
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Spin Density Matrix Elements

ρ0
00 from g8b (black), g1c (blue), g11a (red)
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Spin Density Matrix Elements

Re(ρ0
10) in g8b
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Spin Density Matrix Elements

ρ0
1−1 in g8b
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Spin Density Matrix Elements

ρ0
1−1 from g8b (black), g1c (blue), g11a (red)
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Spin Density Matrix Elements

ρ0
1−1 from g8b (black), g1c (blue), g11a (red)
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Spin Density Matrix Elements

ρ1
00 in g8b
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Spin Density Matrix Elements

Re(ρ1
10) in g8b
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Spin Density Matrix Elements

ρ1
1−1 in g8b
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Spin Density Matrix Elements

ρ1
11 in g8b
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Spin Density Matrix Elements

Im(ρ2
10) in g8b
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Spin Density Matrix Elements

Im(ρ2
1−1) in g8b
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Spin Density Matrix Elements

Im(ρ3
10) in g1c
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Spin Density Matrix Elements

Im(ρ3
1−1) in g1c
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Spin Density Matrix Elements

Symmetries

There are a few symmetries that are present among the new SDMEs

For almost the entire energy range under study the ρ1
00 element

mirrors the ρ0
00 element

Below 1825 MeV, Re(ρ1
10) and Im(ρ2

10) mirror each other’s
movements

At almost all energies, ρ1
1−1 and Im(ρ2

1−1) elements are near exact
mirrors

Brian Vernarsky (CMU) Thesis Defense April 28, 2014 27 / 37



Spin Density Matrix Elements

ρ0
00 (black) Compared to ρ1

00 (red)
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Spin Density Matrix Elements

Re(ρ1
10) (black) Compared to Im(ρ2

10) (red)
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Spin Density Matrix Elements

ρ1
1−1 (black) Compared to Im(ρ2

1−1) (red)
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Partial Wave Analysis

PWA in g8b

Our PWA fits are computed with a limited number of s-wave
amplitudes along with t-channel amplitudes constructed and
parameters locked to the Oh, Titov and Lee model for non-resonant
channels

All combinations of two s-waves (up to J = 11/2) with the t-channel
are run through the same fitter used for the mother fit

Determine best fits by comparing final log likelihood values and
comparing observables, SDMEs

In g11a, the 3/2-, 5/2+ combination was the best fit from 1720-2000
MeV, and was able to reproduce many aspects of the ρ0 elements

The added SDMEs prove that more resonances are required
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Partial Wave Analysis

ρ0 from g8b 3/2-, 5/2+ fit for
√

s = 1885 MeV
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Partial Wave Analysis

ρ1 from g8b 3/2-, 5/2+ for
√

s = 1885 MeV
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Partial Wave Analysis

ρ2 from g8b 3/2-, 5/2+ for
√

s = 1885 MeV
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Summary

Summary

We have modified out fitting code to include photon polarization

Measurements of the unpolarized SDMEs agree well with what was
seen in g11a

First measurements have been made of the ρ1−3 SDMEs for ω
photoproduction over a wide range of angles and energies

These additional elements have aided our search for the resonances
important in ω production, making it clear that there is more going
on than was seen in the unpolarized fits

Adding in target polarization will increase the analyzing power even
more
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Summary

BACKUP SLIDES

BACKUP SLIDES
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Summary

Brief Density Matrix Reminder

Density matricies represent particles that can be in multiple states

If the density matrix for a particle is known then all QM observables
can be calculated

For a particle with n states, each having wave function |ψi >, the
density matrix can be constructed as

ρ =
n∑

i ,i ′

aii ′ |ψi ′ >< ψi | (2)

Diagonal elements represent the probability that the particle is in
state |ψi >

Off-diagonal elements, ρii ′ , represent the probability of a transition
from state |ψi > to state |ψi ′ >

An unpolarized particle’s density matrix is the identity matrix

For this talk the density matrix will always be in the spin space
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Summary

Determining ργ

The density matrix for a photon can be contructed by knowing the
photon has two spin states

These are denoted as |mγ = + > and |mγ = − >

Now ργ can be written as a linear combination of the identity matrix
and the Pauli matrices dotted into the polarization vector

ργ =
1

2
I +

1

2
~Pγ~σ (3)

~P = (−ηL cos(2α),−ηL sin(2α), ηc) (4)

ηc/L are the polarization values for the circularly/linearly polarized
photons, −1 ≤ ηc ≤ 1, 0 ≤ ηL ≤ 1

Generically the photon density matrix is written

ργ =
1

2

(
(1 + ηc) −ηLe

−2iα

−ηLe
2iα (1− ηc)

)
(5)
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Summary

Decomposition of ρV

The density matrix for a photoproduced vector meson with an
unpolarized target is related to the density matrix of the photon by:

ρV = JργJ† (6)

J can be taken to be a matrix of the production amplitudes calculated
in the center of mass frame

Since ργ can be decomposed so can ρV

ρV = ρ0
V +

3∑
i=1

P i
γρ

i
V (7)

ρi
V = Jρi

γJ† (8)

No measurements of of the ρ1,2,3 elements have previously been
performed for the ω meson
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Summary

Equations for ρV

The equations for the SDMEs are then as follows:

ρ0
mV mV ′ =

1

2N

∑
mγmimf

Amγ ,mi ,mf ,mV
∗ A†mγ ,mi ,mf ,mV ′ (9)

ρ1
mV mV ′ =

1

2N

∑
mγmimf

Amγ ,mi ,mf ,mV
∗ A†−mγ ,mi ,mf ,mV ′ (10)

ρ2
mV mV ′ =

i

2N

∑
mγmimf

(−mγ)Amγ ,mi ,mf ,mV
∗ A†−mγ ,mi ,mf ,mV ′ (11)

ρ3
mV mV ′ =

1

2N

∑
mγmimf

mγAmγ ,mi ,mf ,mV
∗ A†mγ ,mi ,mf ,mV ′ (12)
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Summary

Measurable Elements

ρ0 =


1
2(1− ρ0

00) Re{ρ0
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Summary

Partial Wave Fits

The method used for our partial wave analysis is an event-based
extended maximum liklihood fit

No binning is done to the data other than in narrow
√

s bins

The liklihood function, L, is dependent upon a set of parameters
acting as weights for the amplitudes

For all data the function we need to minimize is

− lnL = −
Nevents∑

i

ln |M(~x ,Xi )|2 +
S(s)

Nraw

Nacc∑
i

|M(~x ,Xi )|2 +const. (14)

M is the Lorentz invariant transition amplitude taking the initial
state γp to the final state pπ+π−π0

M can be interpreted as the non-normalized cross section
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Summary

Determining the Transition Amplitude

M is determined from the following equation

|M|2 = Tr[J(ργ ⊗ ρi )J
†] (15)

J in the above equation is a 2x4 matrix of the production amplitudes

J =

(
A+++ A+−+ A−++ A−−+

A++− A+−− A−+− A−−−

)
(16)

The direct product between ργ and ρi results in a 4x4 matrix which
represents the initial space of the reaction

In the unpolarized case both ργ and ρi are the identity matrix and so
M becomes:

|M|2 = Tr[JJ†] =
∑

mγ ,mi ,mf

|Amγ ,mi ,mf
|2 (17)
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Summary

Circular Polarization

Recall that the photon density matrix is written

ργ =
1

2

(
(1 + ηc) −ηLe

−2iα

−ηLe
2iα (1− ηc)

)
(18)

For the case of circular polarization this leads to

|M|2 =
∑

mi ,mf

(
(1 + ηc)|A+,mi ,mf

|2 + (1− ηc)|A−,mi ,mf
|2

)
(19)

Note that ηc ranges from -1 to 1, being negative/positive when the
helicity is measured to be left/right
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Summary

Linear Polarization

In the case of linear polarization M is the following

|M|2 =
∑

mi ,mf

( |A+,mi ,mf
|2 + |A−,mi ,mf

|2 −

ηL(e
−2iαA+,mi ,mf

A†−,mi ,mf
+ (20)

e2iαA−,mi ,mf
A†+,mi ,mf

)

Clearly there is an unpolarized part and a polarized part,

The polarized part includes a mixing of amplitude types

The polarized part is separated into a sum of conjugates

Thus the polarized part is completely real
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Summary

Monte Carlo

The same M function must be used for the monte carlo data as for
the measured data to properly normalize the data

MC data is thrown only as 4-vectors to equally populate the allowed
phase space

This requires each MC event be assigned a polarization

For circularly polarized experiments each MC event is assigned a
polarization according to the Maximon and Olson relationship

For linearly polarized data ηL depends on the instantaneous coherent
edge, which does not exist in the MC

The average polarization for the data in a given bin is used as ηL for
all MC events in that bin

This approximation should be valid as long as the polarization in a bin
is tightly bound, which is true
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