First Measurements of the Polarized Spin Density Matrix Elements along with a Partial Wave Analysis for $\gamma \mathbf{p} \rightarrow \mathbf{p}\omega$ using CLAS at Jefferson Lab

Brian Vernarsky

Thesis Defense

Department of Physics Carnegie Mellon University Advisor: Curtis Meyer

April 28, 2014

Brian Vernarsky (CMU)

Thesis Defense

April 28, 2014 1 / 37

- 2 DATA SELECTION
- **3** Spin Density Matrix Elements
- **4** PARTIAL WAVE ANALYSIS

3

→ 3 → < 3</p>

OUTLINE

- **2** DATA SELECTION
- **3** Spin Density Matrix Elements
- 4 PARTIAL WAVE ANALYSIS

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QUANTUM CHROMODYNAMICS

- What is happening inside of a nucleon?
- Nucleons are made of quarks and gluons
- QCD is the theory of how quarks and gluons interact
- The *charge* term for QCD is called color charge and comes in three forms: red, green, and blue
- Quarks and gluons carry color charge, as well as electromagnetic charge
- How can we study what is happening inside of a nucleon?

BARYON SPECTROSCOPY

- Photons can be used to probe nucleons
- A photon strikes a nucleon, which absorbs the photon and enters an excited state briefly before returning to the ground state
- It returns to the ground state by emitting baryons and mesons
- The spectrum of excited nucleon states, or resonances, is discrete
- Excited states are characterized by
 - Total Angular Momentum, J
 - Parity, P
 - Mass
 - Width/Lifetime

RESONANCES

- The PDG currently lists 15 resonances whose presence is likely
- There are an additional 11 states that have been detected, but not confirmed
- Theory predicts more than twice as many states: *missing baryon problem*
- Simplify by looking at a single decay product
- We will attempt to probe the resonances by looking at one particular decay product, the ω meson

The ω Meson

- Spin-1, or vector, meson
- Rest mass = 782.59 ± 0.11 MeV
- Width = 8.49 MeV \rightarrow Lifetime = 7.75x10⁻²³s
- Charge = 0
- Isospin = 0
 - Can only couple to N^* states, not $\Delta^* s$
- Branching Ratios:
 - $\pi^+\pi^-\pi^0 \rightarrow 89.1\%$
 - $\pi^0 \gamma \rightarrow 8.92\%$
 - $\pi^+\pi^- \rightarrow 1.70\%$
 - $\bullet~$ All others $\rightarrow 0.28\%$
- We will be looking at the $\pi^+\pi^-\pi^0$ decay channel

- 3

Introduction

Methodology

- To perform a complete analysis of ω photoproduction, the elements of its spin density matrix (SDM) must be measured
- The method used to extract the SDM elements (SDMEs) is to run a unbinned expanded maximum likelihood fits of the four vectors using partial wave amplitudes
- Use the parameters from that fit to calculate the SDMEs
- The formalism has been developed over the last few years to deal with polarized photons
- Determine which resonances are important for ω production using partial wave analysis
- Knowledge of the SDM will help constrain the partial wave analysis
- Adding in photon polarization increases analyzing power for PWA

OUTLINE

2 Data Selection

3 Spin Density Matrix Elements

4 PARTIAL WAVE ANALYSIS

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

JEFFERSON LAB

- The data for this analysis was taken at Jefferson Lab in Newport News, VA, using the CEBAF Large Acceptance Spectrometer (CLAS)
- Jefferson Lab utilized a continuous electron beam, with energies up to 6 GeV, that is converted to a photon beam via bremsstrahlung reactions for the experiments analyzed here
- The photon beam can have linear or circular polarization or be unpolarized
- The experiments analyzed, g1c and g8b, used an unpolarized liquid hydrogen target with a circularly/linearly polarized photon beam

イロト イポト イヨト イヨト 三日

The g1c Dataset

- Collected in October and November of 1999
- 4.5 billion triggers
- Unpolarized target
- Three different beam energies:
 - 3.115 GeV No polarization values recorded (not analyzed)
 - 2.897 GeV Incomplete normalization values
 - 2.445 GeV
- Circularly polarized photons
- Degree of circular polarization determined from Maximon and Olson relation

$$\zeta_{c} = \frac{k(\epsilon_{beam} + \frac{1}{3}\epsilon_{recoil})\zeta_{beam}}{\epsilon_{beam}^{2} + \epsilon_{recoil}^{2} - \frac{2}{3}\epsilon_{beam}\epsilon_{recoil}}$$

イロト イポト イヨト イヨト 二日

The G8b Dataset

- Collected in July and August of 2005
- 10.5 billion triggers
- Unpolarized target
- Linearly polarized photons (coherent bremsstrahlung)
- Five different coherent edge settings from 1.3 GeV 2.1 GeV
- Polarization in PARA and PERP directions
- Degree of linear polarization determined from tables based on photon energy and the instantaneous coherent edge

EVENT SELECTION

- Require detection of p, $\pi^+,$ and π^-
- Apply ELoss, tagger and momentum corrections
- Require events meet the requirements:
 - $|\vec{p_p}| \ge 350 \text{ MeV}$
 - $0 \le missing mass \le 450 \text{ MeV}$
 - $\bullet\,$ Missing mass off proton within 25 MeV of ω mass, 782 MeV
 - Confidence Level from 1C kinematic fit to $\gamma p
 ightarrow p \pi^+ \pi^-(\pi^0) \geq 10\%$
 - Pass PID, fiducial volume, and TOF paddle cuts
 - $\cos \theta_{CM}^{\pi^0} > 0.99$
- Event-based Q-values to weight signal and background events
- g1c: 650,000 ω events in 1720 $\leq \sqrt{s} \leq$ 2470 MeV
- g8b: 2,900,000 ω events in 1720 $\leq \sqrt{s} \leq$ 2210 MeV

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

OUTLINE

2 DATA SELECTION

3 Spin Density Matrix Elements

4 PARTIAL WAVE ANALYSIS

5 SUMMARY

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spin Density Matrix

- The spin density matrix of a vector meson photoproduced from an unpolarized target can be thought of as the sum of four 3x3 Hermitian matrices
 - ρ^0 Any photon polarization
 - ρ^{1-2} Linear photon polarization
 - ρ^3 Circular photon polarization
- Each of these matrices contains 9 complex values, but the properties of being a Hermitian matrix and parity reduce that number to 5 real values for each matrix
- All 5 values cannot be measured for each matrix
- The next slide shows each matrix, the measurable elements are underlined

Spin Density Matrix

$$\begin{split} \rho^{0} &= \left(\begin{array}{ccc} \frac{\frac{1}{2}(1-\rho_{00}^{0})}{\cdot} & \frac{Re\{\rho_{10}^{0}\} + i * Im\{\rho_{10}^{0}\}}{\rho_{00}^{0}} & \frac{Re\{\rho_{1-1}^{0}\}}{\frac{1}{2}(1-\rho_{00}^{0})} \right) \\ \rho^{1} &= \left(\begin{array}{ccc} \frac{\rho_{11}^{1}}{\cdot} & \frac{Re\{\rho_{10}^{1}\} + i * Im\{\rho_{10}^{1}\}}{\rho_{00}^{0}} & \frac{-Re\{\rho_{10}^{1}\} + i * Im\{\rho_{10}^{1}\}}{\rho_{11}^{1}} \\ \cdot & \cdot & \frac{\rho_{00}^{1}}{\cdot} & \frac{-Re\{\rho_{10}^{1}\} + i * Im\{\rho_{10}^{1}\}}{\rho_{11}^{1}} \\ \cdot & \cdot & \frac{\rho_{11}^{1}}{\rho_{11}^{1}} & Re\{\rho_{10}^{2}\} + i * \frac{Im\{\rho_{10}^{2}\}}{\rho_{11}^{2}} & i * \frac{Im\{\rho_{1-1}^{2}\}}{\rho_{11}^{2}} \\ \cdot & \cdot & \rho_{11}^{2} & \frac{1 * Im\{\rho_{10}^{2}\}}{\rho_{11}^{2}} \\ \cdot & \cdot & \rho_{11}^{2} & \frac{\rho_{11}^{2}}{\rho_{11}^{2}} & \frac{Re\{\rho_{10}^{3}\} + i * \frac{Im\{\rho_{10}^{2}\}}{\rho_{11}^{2}} \\ \cdot & 0 & Re\{\rho_{10}^{2}\} - i * \frac{Im\{\rho_{10}^{2}\}}{\rho_{11}^{2}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{11}^{2}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{11}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{11}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{11}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{10}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{11}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{11}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{10}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{10}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{10}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{10}^{3}} \\ \cdot & 0 & Re\{\rho_{10}^{3}\} - i * \frac{Im\{\rho_{10}^{3}\}}{\rho_{10}^{3}} \\ \cdot & Re\{\rho_{10}^{3}\}$$

RESULTS

- Results presented come from *mother* fit
 - Amplitudes from J=1/2 up to J=11/2, both parities
- Previous experiment, g11a
- $\bullet\,$ The three ρ^0 elements from g8b are presented compared to the results from g11a
- $\bullet\,$ Then the ρ^1 and ρ^2 elements from g8b and the ρ^3 elements from g1c will be presented
- Errors are calculated using the bootstrap method
- The g8b data is in black, the g11a data is in red, and the g1c data is in blue when presented together

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

 ρ_{00}^0 in G8B

Brian Vernarsky (CMU)

April 28, 2014 16 / 37

 ρ_{00}^0 in $\sqrt{s} = 1825$ MeV bin

16 / 37

Spin Density Matrix Elements

ρ_{00}^{0} from G8b (black), G1C (blue), G11A (red)

16 / 37

ρ_{00}^{0} from G8B (black), G1C (blue), G11A (red)

Brian Vernarsky (CMU)

April 28, 2014 16 / 37

${ m Re}(ho_{10}^{0})$ in G8b

Brian Vernarsky (CMU)

April 28, 2014 17 / 37

ρ_{1-1}^0 in G8B

 ρ_{1-1}^0 in $\sqrt{s} = 1825$ MeV bin

Brian Vernarsky (CMU)

Thesis Defense

April 28, 2014

18 / 37

ρ_{1-1}^{0} from G8B (black), G1C (blue), G11A (red)

April 28, 2014

э

18 / 37

ρ_{1-1}^{0} from G8B (black), G1C (blue), G11A (red)

Brian Vernarsky (CMU)

April 28, 2014 18 / 37

ρ_{00}^1 in G8B

Brian Vernarsky (CMU)

April 28, 2014 19 / 37

${ m Re}(ho_{10}^1)$ in G8b

√s = 1725 MeV	√s = 1745 MeV	√s = 1765 MeV	√s = 1785 MeV	√s = 1805 MeV
	- ++++****			•••••
√s = 1825 MeV	√s = 1845 MeV	√s = 1865 MeV	√s = 1885 MeV	√s = 1905 MeV
	*******	*********	++••••••	++++*********
√s = 1925 MeV	√s = 1945 MeV	√s = 1965 MeV	√s = 1985 MeV	√s = 2005 MeV
****************************	++++++++++++++++++++++++++++++++++++++	***********	****************	
√s = 2025 MeV	√s = 2045 MeV	√s = 2065 MeV	√s = 2085 MeV	√s = 2105 MeV
++++++++++++++++++++++++++++++++++++++	·····	+++**************************	+ ₊₊ ****************	
√s = 2125 MeV	√s = 2145 MeV	√s = 2165 MeV	S = 2185 MeV	√s = 2205 MeV
	+_+************	++++++++++++++++++++++++++++++++++++++	+ ₊₊₊ ***********	[╋] ╵

ρ_{1-1}^1 in G8B

ho_{11}^1 in G8B

Brian Vernarsky (CMU)

April 28, 2014 22 / 37

${ m Im}(ho_{10}^2)$ in G8b

$\mathrm{Im}(ho_{1-1}^2)$ in G8B

${ m Im}(ho_{10}^3)$ in G1C

Brian Vernarsky (CMU)

April 28, 2014 25 / 37

$\mathrm{Im}(ho_{1-1}^3)$ in G1C

Symmetries

- There are a few symmetries that are present among the new SDMEs
- For almost the entire energy range under study the ρ_{00}^1 element mirrors the ρ_{00}^0 element
- Below 1825 MeV, ${\rm Re}(\rho_{10}^1)$ and ${\rm Im}(\rho_{10}^2)$ mirror each other's movements
- At almost all energies, ρ_{1-1}^1 and $\mathrm{Im}(\rho_{1-1}^2)$ elements are near exact mirrors

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

ρ_{00}^{0} (black) Compared to ρ_{00}^{1} (red)

$\operatorname{Re}(\rho_{10}^1)$ (black) Compared to $\operatorname{Im}(\rho_{10}^2)$ (red)

Brian Vernarsky (CMU)

3

ρ_{1-1}^1 (black) Compared to $\text{Im}(\rho_{1-1}^2)$ (red)

Brian Vernarsky (CMU)

April 28, 2014 30 / 37

OUTLINE

2 DATA SELECTION

3 Spin Density Matrix Elements

4 PARTIAL WAVE ANALYSIS

5 SUMMARY

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PWA in g8b

- Our PWA fits are computed with a limited number of s-wave amplitudes along with t-channel amplitudes constructed and parameters locked to the Oh, Titov and Lee model for non-resonant channels
- All combinations of two s-waves (up to J=11/2) with the t-channel are run through the same fitter used for the mother fit
- Determine best fits by comparing final log likelihood values and comparing observables, SDMEs
- In g11a, the 3/2-, 5/2+ combination was the best fit from 1720-2000 MeV, and was able to reproduce many aspects of the ρ^0 elements
- The added SDMEs prove that more resonances are required

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

ρ^{0} from G8B 3/2-, 5/2+ fit for $\sqrt{s} = 1885$ MeV

Brian Vernarsky (CMU)

Thesis Defense

April 28, 2014 33 / 37

ρ^1 from G8B 3/2-, 5/2+ for $\sqrt{s} = 1885$ MeV

Brian Vernarsky (CMU)

Thesis Defense

April 28, 2014 34 / 37

ρ^2 from G8B 3/2-, 5/2+ for $\sqrt{s} = 1885$ MeV

э

OUTLINE

- **2** DATA SELECTION
- **3** Spin Density Matrix Elements
- 4 PARTIAL WAVE ANALYSIS

э

SUMMARY

- We have modified out fitting code to include photon polarization
- Measurements of the unpolarized SDMEs agree well with what was seen in g11a
- First measurements have been made of the ρ^{1-3} SDMEs for ω photoproduction over a wide range of angles and energies
- These additional elements have aided our search for the resonances important in ω production, making it clear that there is more going on than was seen in the unpolarized fits
- Adding in target polarization will increase the analyzing power even more

Summary

BACKUP SLIDES

BACKUP SLIDES

Brian Vernarsky (CMU)

Thesis Defense

April 28, 2014 37 / 37

- 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BRIEF DENSITY MATRIX REMINDER

- Density matricies represent particles that can be in multiple states
- If the density matrix for a particle is known then all QM observables can be calculated
- For a particle with n states, each having wave function |ψ_i >, the density matrix can be constructed as

$$\rho = \sum_{i,i'}^{n} \mathbf{a}_{ii'} |\psi_{i'}\rangle \langle \psi_{i}| \tag{2}$$

- Diagonal elements represent the probability that the particle is in state $|\psi_i>$
- Off-diagonal elements, $\rho_{ii'}$, represent the probability of a transition from state $|\psi_i >$ to state $|\psi_{i'} >$
- An unpolarized particle's density matrix is the identity matrix
- For this talk the density matrix will always be in the spin space

Summary

Determining ρ_{γ}

- The density matrix for a photon can be contructed by knowing the photon has two spin states
- ullet These are denoted as $|m_\gamma=+>$ and $|m_\gamma=->$
- Now ρ_{γ} can be written as a linear combination of the identity matrix and the Pauli matrices dotted into the polarization vector

$$\rho_{\gamma} = \frac{1}{2}\mathcal{I} + \frac{1}{2}\vec{P}_{\gamma}\vec{\sigma} \tag{3}$$

$$\vec{P} = (-\eta_L \cos(2\alpha), -\eta_L \sin(2\alpha), \eta_c) \tag{4}$$

- $\eta_{c/L}$ are the polarization values for the circularly/linearly polarized photons, $-1 \le \eta_c \le 1$, $0 \le \eta_L \le 1$
- Generically the photon density matrix is written

$$\rho_{\gamma} = \frac{1}{2} \begin{pmatrix} (1+\eta_c) & -\eta_L e^{-2i\alpha} \\ -\eta_L e^{2i\alpha} & (1-\eta_c) \end{pmatrix}$$
(5)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DECOMPOSITION OF ρ_V

 The density matrix for a photoproduced vector meson with an unpolarized target is related to the density matrix of the photon by:

$$\rho_V = J \rho_\gamma J^\dagger \tag{6}$$

- J can be taken to be a matrix of the production amplitudes calculated in the center of mass frame
- Since ρ_{γ} can be decomposed so can ρ_{V}

$$\rho_{V} = \rho_{V}^{0} + \sum_{i=1}^{3} P_{\gamma}^{i} \rho_{V}^{i}$$
(7)

$$\rho_V^i = J \rho_\gamma^i J^\dagger \tag{8}$$

• No measurements of of the $\rho^{1,2,3}$ elements have previously been performed for the ω meson

Brian Vernarsky (CMU)

April 28, 2014 37 / 37

Summary

Equations for ρ_V

• The equations for the SDMEs are then as follows:

$$\rho_{m_V m_{V'}}^0 = \frac{1}{2N} \sum_{m_\gamma m_i m_f} A_{m_\gamma, m_i, m_f, m_V} * A_{m_\gamma, m_i, m_f, m_{V'}}^{\dagger}$$
(9)

$$\rho_{m_V m_{V'}}^1 = \frac{1}{2N} \sum_{m_\gamma m_i m_f} A_{m_\gamma, m_i, m_f, m_V} * A_{-m_\gamma, m_i, m_f, m_{V'}}^{\dagger}$$
(10)

$$\rho_{m_V m_{V'}}^2 = \frac{i}{2N} \sum_{m_\gamma m_i m_f} (-m_\gamma) A_{m_\gamma, m_i, m_f, m_V} * A_{-m_\gamma, m_i, m_f, m_{V'}}^{\dagger}$$
(11)

$$\rho_{m_V m_{V'}}^3 = \frac{1}{2N} \sum_{m_\gamma m_i m_f} m_\gamma A_{m_\gamma, m_i, m_f, m_V} * A_{m_\gamma, m_i, m_f, m_{V'}}^{\dagger}$$
(12)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

MEASURABLE ELEMENTS

$$\begin{split} \rho^{0} &= \left(\begin{array}{c} \frac{\frac{1}{2}(1-\rho_{00}^{0})}{P_{00}^{0}} & \frac{Re\{\rho_{10}^{0}\} + i * Im\{\rho_{10}^{0}\}}{\frac{\rho_{00}^{0}}{2}} & \frac{Re\{\rho_{1-1}^{0}\}}{\frac{1}{2}(1-\rho_{00}^{0})} \end{array} \right) \\ \rho^{1} &= \left(\begin{array}{c} \frac{\rho_{11}^{1}}{P_{10}^{1}} & \frac{Re\{\rho_{10}^{1}\} + i * Im\{\rho_{10}^{1}\}}{\frac{\rho_{00}^{1}}{2}} & \frac{Re\{\rho_{1-1}^{1}\}}{\frac{\rho_{10}^{1}}{2}} \end{array} \right) \\ \rho^{2} &= \left(\begin{array}{c} \rho_{11}^{2} & Re\{\rho_{10}^{2}\} + i * Im\{\rho_{10}^{2}\}}{2} & i * Im\{\rho_{10}^{2}\} \\ 0 & Re\{\rho_{10}^{2}\} - i * Im\{\rho_{10}^{2}\}}{\frac{\rho_{11}^{2}}{2}} \end{array} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{1-1}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{\frac{\rho_{11}^{2}}{2}} \end{array} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{\frac{\rho_{11}^{3}}{2}} \end{array} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{\frac{\rho_{11}^{3}}{2}} \end{array} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{\frac{\rho_{11}^{3}}{2}} \end{array} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{\frac{\rho_{11}^{3}}{2}} \end{array} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{\frac{\rho_{10}^{3}}{2}} \end{array} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{2} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\}}{2} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\} \right) \\ \rho^{3} &= \left(\begin{array}{c} \rho_{11}^{3} & Re\{\rho_{10}^{3}\} + i * Im\{\rho_{10}^{3}\}}{2} & Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} - i * Im\{\rho_{10}^{3}\} \\ 0 & Re\{\rho_{10}^{3}\} \\$$

Brian Vernarsky (CMU)

April 28, 2014 37 / 37

PARTIAL WAVE FITS

- The method used for our partial wave analysis is an event-based extended maximum liklihood fit
- No binning is done to the data other than in narrow \sqrt{s} bins
- The liklihood function, \mathcal{L} , is dependent upon a set of parameters acting as weights for the amplitudes
- For all data the function we need to minimize is

$$-\ln \mathcal{L} = -\sum_{i}^{N_{events}} \ln |\mathcal{M}(\vec{x}, X_i)|^2 + \frac{\mathcal{S}(s)}{N_{raw}} \sum_{i}^{N_{acc}} |\mathcal{M}(\vec{x}, X_i)|^2 + const.$$
(14)

- \mathcal{M} is the Lorentz invariant transition amplitude taking the initial state γp to the final state $p\pi^+\pi^-\pi^0$
- $\bullet~\mathcal{M}$ can be interpreted as the non-normalized cross section

April 28, 2014 37 / 37

イロト 不得 トイヨト イヨト 二日

Summary

DETERMINING THE TRANSITION AMPLITUDE

 $\bullet \ \mathcal{M}$ is determined from the following equation

$$|\mathcal{M}|^2 = \mathsf{Tr}[J(\rho_\gamma \otimes \rho_i)J^{\dagger}] \tag{15}$$

• J in the above equation is a 2x4 matrix of the production amplitudes

$$J = \begin{pmatrix} A_{+++} & A_{+-+} & A_{-++} & A_{--+} \\ A_{++-} & A_{+--} & A_{-+-} & A_{---} \end{pmatrix}$$
(16)

- The direct product between ρ^γ and ρ^i results in a 4x4 matrix which represents the initial space of the reaction
- In the unpolarized case both ρ_{γ} and ρ_i are the identity matrix and so M becomes:

$$|\mathcal{M}|^2 = \mathrm{Tr}[JJ^{\dagger}] = \sum_{m_{\gamma}, m_i, m_f} |A_{m_{\gamma}, m_i, m_f}|^2$$
(17)

CIRCULAR POLARIZATION

Recall that the photon density matrix is written

$$\rho_{\gamma} = \frac{1}{2} \begin{pmatrix} (1+\eta_c) & -\eta_L e^{-2i\alpha} \\ -\eta_L e^{2i\alpha} & (1-\eta_c) \end{pmatrix}$$
(18)

For the case of circular polarization this leads to

$$|\mathcal{M}|^{2} = \sum_{m_{i},m_{f}} \left((1+\eta_{c}) |A_{+,m_{i},m_{f}}|^{2} + (1-\eta_{c}) |A_{-,m_{i},m_{f}}|^{2} \right)$$
(19)

 Note that η_c ranges from -1 to 1, being negative/positive when the helicity is measured to be left/right

LINEAR POLARIZATION

 \bullet In the case of linear polarization ${\cal M}$ is the following

$$|\mathcal{M}|^{2} = \sum_{m_{i},m_{f}} (|A_{+,m_{i},m_{f}}|^{2} + |A_{-,m_{i},m_{f}}|^{2} - \eta_{L} (e^{-2i\alpha}A_{+,m_{i},m_{f}}A_{-,m_{i},m_{f}}^{\dagger} + e^{2i\alpha}A_{-,m_{i},m_{f}}A_{+,m_{i},m_{f}}^{\dagger})$$

$$(20)$$

- Clearly there is an unpolarized part and a polarized part,
- The polarized part includes a mixing of amplitude types
- The polarized part is separated into a sum of conjugates
- Thus the polarized part is completely real

Summary

Monte Carlo

- The same ${\cal M}$ function must be used for the monte carlo data as for the measured data to properly normalize the data
- MC data is thrown only as 4-vectors to equally populate the allowed phase space
- This requires each MC event be assigned a polarization
- For circularly polarized experiments each MC event is assigned a polarization according to the Maximon and Olson relationship
- For linearly polarized data η_L depends on the instantaneous coherent edge, which does not exist in the MC
- The average polarization for the data in a given bin is used as η_L for all MC events in that bin
- This approximation should be valid as long as the polarization in a bin is tightly bound, which is true

イロト 不得 とうせい かほとう ほ